[1] JIAO Feng, LUO Rongsong, DAI Xuelei, et al. Chromosome level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba) [J]. Molecular Plant, 2020, 13(7): 1001 − 1012.
[2] 齐明芳, 许涛, 郭泳, 等. 园艺植物器官脱落研究进展[J]. 沈阳农业大学学报, 2010, 41(6): 643 − 648.

QI Mingfang, XU Tao, GUO Yong, et al. Advance of organ abscission research on horticultural plants [J]. Journal of Shenyang Agricultural University, 2010, 41(6): 643 − 648.
[3]

CHUNG K R, SHILTS T, ERTÜRK U, et al. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus [J]. FEMS Microbiology Letters, 2003, 226(1): 23 − 30.
[4]

COTTEE N S, BANGE M P, WILSON I W, et al. Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field [J]. Functional Plant Biology, 2012, 39(8): 670 − 678.
[5] 伏健民, 束怀瑞. 春季干旱对金冠苹果不同部位叶片衰老和脱落的影响[J]. 果树科学, 1993, 10(2): 65 − 68.

FU Jianmin, SU Huairui. Effect of water stress in spring on senescence and abscission of leaves on different position in golden delicious apple trees [J]. Journal of Fruit Science, 1993, 10(2): 65 − 68.
[6] 吴建阳, 李彩琴, 李建国. 荔枝ACS1基因的分离及其与幼果脱落的关系[J]. 果树学报, 2017, 34(7): 817 − 827.

WU Jianyang, LI Caiqin, LI Jianguo. Isolation of ACS1 gene and the relationship between its expression and fruitlet abscission in litchi [J]. Journal of Fruit Science, 2017, 34(7): 817 − 827.
[7]

OHKUMA K, LYON J L, ADDICOTT F T, et al. Abscisin Ⅱ, an abscission accelerating substance from young cotton fruit [J]. Science, 1963, 142(3599): 1592 − 1593.
[8]

BURG S P. Ethylene, plant senescence and abscission [J]. Plant Physiology, 1968, 43: 1503 − 1511.
[9]

YANG Ziqin, ZHONG Xiumei, FAN Yan, et al. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan)[J/OL]. Frontiers in Plant Science, 2015, 6: 360[2022-02-18]. doi: 10.3389/fpls.2015.00360.
[10] 寇晓虹, 罗云波. 植物多聚半乳糖醛酸酶功能研究进展[J]. 生物技术通报, 2003(5): 15 − 18.

KOU Xiaohong, LUO Yunbo. Research advance in function of plant polygalacturonase [J]. Biotechnology Bulletin, 2003(5): 15 − 18.
[11]

GOLDENTAL-COHEN S, BURSTEIN C, BITON I, et al. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound[J/OL]. BMC Plant Biology, 2017, 17(1): 87[2022-02-20]. doi: 10.1186/s12870-017-1035-1.
[12]

LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J/OL]. Genome Biology, 2014, 15(12): 550[2022-02-20]. doi: 10.1186/s13059-014-0550-8.
[13]

DEL CAMPILLO E, BENNETT A B. Pedicel breakstrength and cellulase gene expression during tomato flower abscission [J]. Plant Physiology, 1996, 111(3): 813 − 820.
[14] 陈哲, 胡福初, 年宇薇, 等. 无核荔枝ABA生物合成关键酶LcNCED基因克隆及其在生理落果阶段中的表达分析[J]. 热带作物学报, 2018, 39(2): 300 − 307.

CHEN Zhe, HU Fuchu, NIAN Yuwei, et al. Expression analysis and cloning of NCED gene during physiological fruit drop period of seedless litchi fruit [J]. Chinese Journal of Tropical Crops, 2018, 39(2): 300 − 307.
[15] 郭春苗, 杨波, 木巴热克·阿尤普, 等. 扁桃酸性转化酶在生理落果期的特征分析及与落果的关系[J]. 分子植物育种, 2019, 17(14): 4785 − 4790.

GUO Chunmiao, YANG Bo, Mubareke Ayoupu, et al. Characteristics of acid invertase (AcAI) and its relationship with fruit drop during the physiological fruit drop of almond [J]. Molecular Plant Breeding, 2019, 17(14): 4785 − 4790.
[16] 刘岩, 林天宝, 潘美良, 等. 不同长果桑生理性落果规律的调查[J]. 蚕桑通报, 2021, 52(2): 11 − 15.

LIU Yan, LIN Tianbao, PAN Meiliang, et al. Investigation on the physiological abscission rule of long mulberry fruits in different varieties [J]. Bulletin of Sericulture, 2021, 52(2): 11 − 15.
[17]

SANTNER A, ESTELLE M. Recent advances and emerging trends in plant hormone signalling [J]. Nature, 2009, 459(7250): 1071 − 1078.
[18]

DRAZETA L, LANG A, CAPPELLINI C, et al. Vessel differentiation in the pedicel of apple and the effects of auxin transport inhibition [J]. Physiologia Plantarum, 2004, 120(1): 162 − 170.
[19]

KÜHN N, SERRANO A, ABELLO C, et al. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L. ) and the proposed role of auxin homeostasis during fruit abscission[J/OL]. BMC Plant Biology, 2016, 16(1): 234[2022-02-21]. doi: 10.1186/s12870-016-0914-1.
[20]

STASWICK P E, SERBAN B, ROWE M, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid [J]. The Plant Cell, 2005, 17(2): 616 − 627.
[21] 李风光. 桑树生长素早期响应基因Mul-SAUR15的功能研究[D]. 泰安: 山东农业大学, 2020.

LI Fengguang. Biological Function of the Auxin Early Response Gene SAUR15 in Mulberry[D]. Tai’an: Shandong Agricultural University, 2020.
[22]

CHEN Bingxian, MA Jun, XU Zhenjiang, et al. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination [J]. Journal of Integrative Plant Biology, 2016, 58(10): 859 − 869.
[23] 樊卫国, 安华明, 刘国琴, 等. 刺梨果实与种子内源激素含量变化及其与果实发育的关系[J]. 中国农业科学, 2004, 37(5): 728 − 733.

FAN Weiguo, AN Huaming, LIU Guoqin, et al. Changes of endogenous hormones contents in fruit, seeds and their effects on the fruit development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2004, 37(5): 728 − 733.
[24] 周蕾, 魏琦超, 高峰. 细胞分裂素在果实及种子发育中的作用[J]. 植物生理学通讯, 2006, 42(3): 549 − 553.

ZHOU Lei, WEI Qichao, GAO Feng. The effect of cytokinins on fruit and seed development [J]. Plant Physiology Communications, 2006, 42(3): 549 − 553.
[25]

QI Xiaoxiao, HU Shi, ZHOU Hongsheng, et al. A MADS-box transcription factor of ‘Kuerlexiangli’(Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission [J]. Gene, 2018, 642: 163 − 171.
[26]

NAKANO T, FUJISAWA M, SHIMA Y, et al. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals[J/OL]. BMC Plant Biology, 2013, 13: 40[2022-02-25]. doi: 10.1186/1471-2229-13-40.
[27]

NAKANO T, KIMBARA J, FUJISAWA M, et al. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development [J]. Plant Physiology, 2012, 158(1): 439 − 450.
[28]

LIAO Wenbin, YANG Yiling, LI Yayun, et al. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission[J/OL]. Scientific Reports, 2016, 6: 32006[2022-02-10]. doi: 10.1038/srep32006.
[29]

CHEN Ligang, ZHANG Liping, LI Daibo, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 1963 − 1971.
[30]

WANG Jinyan, HU Zhongze, ZHAO Tongmin, et al. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum)[J/OL]. BMC Genomics, 2015, 16(1): 39[2022-02-22]. doi: 10.1186/s12864-015-1249-2.
[31]

LOVISETTO A, GUZZO F, TADIELLO A, et al. Characterization of a bZIP gene highly expressed during ripening of the peach fruit [J]. Plant Physiology and Biochemistry, 2013, 70: 462 − 470.
[32]

SUN Xi, WANG Yu, SUI Na. Transcriptional regulation of bHLH during plant response to stress [J]. Biochemical and Biophysical Research Communications, 2018, 503(2): 397 − 401.
[33]

ALBERT N W, BUTELLI E, MOSS S M A, et al. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus [J]. The New Phytologist, 2021, 231(2): 849 − 863.
[34] 文晓鹏, 仇志浪, 洪怡. 果树落果的生理及分子机制研究进展[J]. 山地农业生物学报, 2018, 37(4): 1 − 17, 101.

WEN Xiaopeng, QIU Zhilang, HONG Yi. Advances in physiological and molecular mechanisms underlying the fruit abscission of fruit trees [J]. Journal of Mountain Agriculture and Biology, 2018, 37(4): 1 − 17, 101.
[35]

ZIMMERLI C, RIBOT C, VAVASSEUR A, et al. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis [J]. The Plant Journal, 2012, 72(2): 199 − 211.