[1] MUNNS R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2):239-250.
[2] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.
[3] KRONZUCKER H J, BRITTO D T. Sodium transport in plants:a critical review[J]. New Phytol, 2011, 189(1):54-81.
[4] ZHU Jiankang. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71.
[5] WANG Ruigang, CHEN Shaoliang, ZHOU Xiaoyang, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiol, 2008, 28(6):947-957.
[6] SUN Jian, CHEN Shaoliang, DAI Songxiang, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiol, 2009, 149(2):1141-1153.
[7] LAOHAVISIT A, RICHARDS S L, SHABALA L, et al. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1[J]. Plant Physiol, 2013, 163(1):253-262.
[8] SHABALA L, CUIN T A, NEWMAN I A, et al. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants[J]. Planta, 2005, 222(6):1041-1050.
[9] SHI Huazhong, ISHITANI M, KIM C S, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proc Natl Acad Sci USA, 2000, 97(12):6896-6901.
[10] SHABALA S. Non-invasive microelectrode ion flux measurements in plant stress physiology[G].//VOLKOV A G. Plant Electrophysiology:Theory and Methods. Berlin:Springer-Verlag, 2006, 35-71.
[11] PARDO J, CUBERO B, LEIDI E, et al. Alkali cation exchangers:roles in cellular homeostasis and stress tolerance[J]. J Exp Bot, 2006, 57(5):1181-1199.
[12] SHI Huazhong, LEE B H, WU S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol, 2003, 21(1):81-85.
[13] MA Dongmei, XU Weirong, LI Huiwen, et al. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.)[J]. Protoplasma, 2014, 251(1):219-231.
[14] SHABALA S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll[J]. Plant Cell Environ, 2000, 23(8):825-837.
[15] BOSE J, XIE Yanjie, SHEN Wenbiao, et al. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots[J]. J Exp Bot, 2013, 64(2):471-481.
[16] YOKOI S, QUINTERO F J, CUBERO B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant J, 2002, 30(5):529-539.
[17] CUIN T A, BOSE J, STEFANO G, et al. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in planta quantification methods[J]. Plant Cell Environ, 2011, 34(6):947-961.
[18] APASE M P, BLUMWALD E. Engineering salt tolerance in plants[J]. Curr Opin Biotechnol, 2002, 13(2):146-150.
[19] OHTA M, HAYASHI Y, NAKASHIMA A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. FEBS Lett, 2002, 532(3):279-282.
[20] GUOA K M, BABOURINAA O, RENGELA Z. Na+/H+ antiporter activity of the SOS1 gene:lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings[J]. Physiol Plantarum, 2009, 137(2):155-165.
[21] SHABALA S, NEWMAN I. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll:masking role of the cell wall[J]. Ann Bot, 2000, 85(5):681-686.
[22] CUIN T A, SHABALA S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots[J]. Plant Cell Physiol, 2005, 46(12):1924-1933.
[23] SHABALA S, DEMIDCHIK V, SHABALA L, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels[J]. Plant Physiol, 2006, 141(4):1653-1665.
[24] CUIN T A, SHABALA S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis[J]. Planta, 2007, 225(3):753-761.
[25] VERA-ESTRELLA R, BARKLA B J, BOHNERT H J, et al. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant[J]. Planta, 1999, 207(3):426-435.
[26] BEILBY M J, SHEPHERD V A. Modeling the current-voltage characteristics of charophyte membranes(Ⅱ)The effect of salinity on membranes of Lamprothamnium papulosum[J]. J Membrane Biol, 2001, 181(2):77-89.
[27] CHEN Zhonghua, POTTOSIN I I, CUIN T A, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley[J]. Plant Physiol, 2007, 145(4):1714-1725.
[28] SHABALA L, BOWMAN J, BROWN J, et al. Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotic[J]. Environ Microbiol, 2009, 11(1):137-148.
[29] PANDOLFI C, POTTOSIN I, CUIN T, et al. Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants[J]. Plant Cell Physiol, 2010, 51(3):422-434.
[30] SHABALA S, CUIN T A, POTTOSIN I I. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking nonselective cation channels[J]. FEBS Lett, 2007, 581(10):1993-1999.
[31] JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel[J]. J Exp Bot, 2013, 64(8):2255-2268.
[32] LISJAK M, SRIVASTAVA N, TEKLIC T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation[J]. Plant Physiol Biochem, 2010, 48(12), 931-935.
[33] CHEN Juan, WU Feihua, WANG Wenhua, et al. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinaciao leracea seedlings[J]. J Exp Bot, 2011, 62(13):4481-4493.
[34] ZHANG Hua, HU Shuli, ZHANG Zejun, et al. Hydrogen sulfide acts as a regulator of flower senescence in plants[J]. Postharvest Biol Tec, 2011, 60(3):251-257.
[35] 朱会朋, 孙健, 赵楠, 等.盐胁迫下硫化氢调控杨树根系的离子流[J].植物生理学报, 2013, 49(6):561-567.

ZHU Huipeng, SUN Jian, ZHAO Nan, et al. Hydrogen sulfide mediates ion fluxes in root of poplars under NaCl stress[J]. Plant Physiol J, 2013, 49(6):561-567.
[36]

TYERMAN S D, SKERRETT I M. Root ion channels and salinity[J]. Sci Hortic, 1999, 78(1/4):175-235.
[37]

MAATHIUS F J M, AMTMANN A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratio[J]. Ann Bot, 1999, 84(2):123-133.
[38]

TESTER M, DAVENPORT R. Na+ tolerance and Na+ transport in higher plants[J]. Ann Bot, 2003, 91(5):503-527.
[39]

CHEN Zhonghua, ZHOU Meixue, NEWMAN I A, et al. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance[J]. Funct Plant Biol, 2007, 34(2):150-162.
[40]

SHABALA S, CUIN T A. Potassium transport and plant salt tolerance[J]. Physiol Plantarum, 2008, 133(4):651-669.
[41]

SHABALA S, CUIN T A, PRISMALL L, et al. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress[J]. Planta, 2007, 227(1):189-197.
[42]

ZHU Jiankang. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5):441-445.
[43]

CARDEN D E, WALKER D J, FLOWERS T J, et al. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance[J]. Plant Physiol, 2003, 131(2):676-683.
[44]

AMTMANN A, SANDERS D. Mechanisms of Na+ uptake by plant cells[J]. Adv Bot Res, 1999, 29:76-112.
[45]

WHITE P J, DAVENPORT R J. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis[J]. Plant Physiol, 2002, 130(3):1386-1395.
[46]

TYERMAN S D, SKERRETT M, GARRILL A, et al. Pathway for the permeation of Na+ and Cl-into protoplasts derived from the cortex of wheat roots[J]. J Exp Bot, 1997, 48(spec):459-480.
[47]

MURATA Y, FUJITA M, NAKATANI T, et al. Effect of Na+ on Ca2+-binding on the plasma membrane of barley mesophyll cells:an electrophoretic study[J]. Plant Cell Physiol, 1998, 39(4):452-457.
[48]

KINRAIDE T B. Interactions among Ca2+, Na+, and K+ in salinity toxicity:quantitative resolution of multiple toxic and ameliorative effects[J]. J Exp Bot, 1999, 50(338):1495-1505.
[49]

LIU Jiping, ZHU Jiankang. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945.
[50]

PARDO J M, REDDY M P, YANG Shuli, et al. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants[J]. Proc Natl Acad Sci USA, 1998, 95(16):9681-9686.
[51]

LYNCH J, POLITO V S, LÄUCHLI A. Salinity stress increases cytoplasmic Ca2+ activity in maize root protoplasts[J]. Plant Physiol, 1989, 90(4):1271-1274.
[52]

GAO Dongjie, KNIGHT M R, TREWAVAS A J, et al. Self-reporting Arabidopsis expressing pH and[Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress[J]. Plant Physiol, 2004, 134(3):898-908.
[53]

LAOHAVISIT A, SHANG Z, RUBIO L, et al. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells[J]. Plant Cell, 2012, 24(4):1522-1533.
[54]

SUN Jian, WANG Meijuan, DING Mingquan, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant Cell Environ, 2010, 33(6):943-958.
[55]

DEMIDCHIK V, SHANG Z, SHIN R, et al. Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane[J]. Plant Physiol, 2011, 156(3):1375-1385.
[56]

SUN Jian, CHEN Shaoliang, DAI Songxiang, et al. Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signal Behav, 2009, 4(4):261-264.
[57]

LORENZEN I, ABERLE T, PLIETH C. Salt stress-induced chloride flux:a study using transgenic Arabidopsis expressing a fluorescent anion probe[J]. Plant J, 2004, 38(3):539-544.
[58]

CHEN Shaoliang, LI Jinke, FRITZ E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecol Manag, 2002, 168(1/3):217-230.
[59]

CHEN Shaoliang, LI Jinke, WANG Shasheng, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Can J For Res, 2003, 33(6):967-975.
[60]

SHABALA S, LEW R R. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells:direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements[J]. Plant Physiol, 2002, 129(1):290-299.