[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报(2014年4月17日)[J]. 环境教育, 2014(6): 8 − 10.

Ministry of Environment Protection, Ministry of Natural Resources. National soil pollution survey bulletin (2014-04-17) [J]. Environmental Education, 2014(6): 8 − 10.
[2] 郑越. 土壤重金属污染的现状及其治理[J]. 中国资源综合利用, 2019, 37(5): 114 − 116.

ZHENG Yue. Current situation and treatment of heavy metal pollution in soil [J]. China Resources Comprehensive Utilization, 2019, 37(5): 114 − 116.
[3]

WANG Yangyang, LIU Yidan, ZHAN Wenhao, et al. Stabilization of heavy metal-contaminated soils by biochar: challenges and recommendations[J/OL]. Science of the Total Environment, 2020, 729: 139060[2022-01-20]. doi: 10.1016/j.scitotenv.2020.139060.
[4] 张建云, 高才慧, 朱晖, 等. 生物质炭对土壤中重金属形态和迁移性的影响及作用机制[J]. 浙江农林大学学报, 2017, 34(3): 543 − 551.

ZHANG Jianyun, GAO Caihui, ZHU Hui, et al. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil [J]. Journal of Zhejiang A&F University, 2017, 34(3): 543 − 551.
[5]

YANG Xing, PAN He, SHAHEEN S M, et al. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil[J/OL]. Environment International, 2021, 156: 106628[2022-01-13]. doi: 10.1016/j.envint.2021.106628.
[6] 李冬琴, 李冰倩, 梁静, 等. 硅和生物炭互作对空心菜-土壤系统中重金属生物有效性的影响[J]. 生态科学, 2021, 40(6): 99 − 105.

LI Dongqin, LI Bingqian, LIANG Jing, et al. The interactive effects of silicon and biochar on heavy metal bioavailability in a water spinach-soil system [J]. Ecological Science, 2021, 40(6): 99 − 105.
[7] 周雷, 嵇梦圆, 桑文静, 等. 稻草秸秆生物炭对土壤中重金属Cd和Pb的固化稳定化机制[J]. 化工环保, 2021, 41(5): 612 − 617.

ZHOU Lei, JI Mengyuan, SANG Wenjing, et al. Solidification and stabilization mechanism of rice straw biochar to heavy metal Cd and Pb in soil [J]. Environmental Protection of Chemical Industry, 2021, 41(5): 612 − 617.
[8] 刘郡. 城市厨余垃圾资源化回收利用现状分析与研究[J]. 资源节约与环保, 2021(10): 146 − 148.

LIU Jun. Analysis and research on the current situation of urban kitchen waste recycling [J]. Resources Economization &Environmental Protection, 2021(10): 146 − 148.
[9] 鞠艳艳, 丁元君, 邵前前, 等. 城市园林废弃物生物质炭性质及其应用潜力[J]. 林业科学, 2020, 56(8): 107 − 120.

JU Yanyan, DING Yuanjun, SHAO Qianqian, et al. Properties and application potential of biochar from urban green wastes [J]. Scientia Silvae Sinicae, 2020, 56(8): 107 − 120.
[10] 刘之欣, 郑森林, 方小山, 等. ENVI-met乔木模型对亚热带湿热地区细叶榕的模拟验证[J]. 北京林业大学学报, 2018, 40(3): 1 − 12.

LIU Zhixin, ZHENG Senlin, FANG Xiaoshan, et al. Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone [J]. Journal of Beijing Forestry University, 2018, 40(3): 1 − 12.
[11]

PENG Qian, NUNES L M, GREENFIELD B K, et al. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment [J]. Environment International, 2016, 88: 261 − 268.
[12] 戴志楠, 杨兴, 陈翰博, 等. 原始及铁改性生物质炭对污染土壤中As、Pb生物有效性和微生物群落结构的影响[J]. 环境科学学报, 2022, 42(6): 1 − 10.

DAI Zhinan, YANG Xing, CHEN Hanbo, et al. Effect of raw and iron-modified biochars on the bioavailability of As and Pb and functional diversityof the microbial community in soils [J]. Acta Scientiae Circumstantiae, 2022, 42(6): 1 − 10.
[13] 贝美容, 黄艳艳, 井玉丹, 等. 施用不同配比生物炭对橡胶树根系生长的短期响应[J]. 热带作物学报, 2019, 40(6): 1041 − 1045.

BEI Meirong, HUANG Yanyan, JING Yudan, et al. Short-term effect of different rate of biochar application on rootdevelopment of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1041 − 1045.
[14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[15] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729.

BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedologica Sinica, 2020, 57(3): 721 − 729.
[16]

SUN Tao, XU Yingming, SUN Yuebing, et al. Crayfish shell biochar for the mitigation of Pb contaminated water and soil: characteristics, mechanisms, and applications[J/OL]. Environmental Pollution, 2021, 271: 116308[2022-01-18]. doi: 10.1016/j.envpol.2020.116308.
[17]

RECH A S, RECH J, CAPRARIO J, et al. Use of shrimp shell for adsorption of metals present in surface runoff [J]. Water Science and Technology, 2019, 79(12): 2221 − 2230.
[18]

PARK J H, WANG J J, XIAO R, et al. Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char [J]. Journal of Colloid &Interface Science, 2018, 525: 143 − 151.
[19]

LIU Zhaoyun, DEMISIE W, ZHANG Mingkui, et al. Simulated degradation of biochar and its potential environmental implications [J]. Environmental Pollution, 2013, 179: 146 − 52.
[20]

BRUUN E W, HAUGGAARD-NIELSEN H, IBRAHIM N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil [J]. Biomass &Bioenergy, 2011, 35(3): 1182 − 1189.
[21]

LEE X J, LEE L Y, HIEW B Y Z, et al. Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead [J]. Bioresource Technology, 2017, 245: 944 − 953.
[22] 聂天宏, 韩学博, 王海龙, 等. 不同种类生物质炭对植烟土壤保育及烤烟生长和品质的影响[J]. 水土保持学报, 2018, 32(6): 346 − 351, 358.

NIE Tianhong, HAN Xuebo, WANG Hailong, et al. Effect of diffreent biochars on conservation, growth and quality of the flue-cured tobacco [J]. Journal of Soil and Water Conservation, 2018, 32(6): 346 − 351, 358.
[23]

XIAO Liang, YUAN Guodong, FENG Lirong, et al. Biochar to reduce fertilizer use and soil salinity for crop production in the Yellow River Delta [J]. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 1478 − 1489.
[24]

van ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1/2): 235 − 246.
[25] 曾爱, 廖允成, 张俊丽, 等. 生物炭对塿土土壤含水量、有机碳及速效养分含量的影响[J]. 农业环境科学学报, 2013, 32(5): 1009 − 1015.

ZENG Ai, LIAO Yuncheng, ZHANG Junli, et al. Effects of biochar on soil moisture, organic carbon and available nutrient contents in manural loessial soils [J]. Journal of Agro-Environment Science, 2013, 32(5): 1009 − 1015.
[26] 武春成, 李天来, 曹霞, 等. 添加生物炭对连作营养基质理化性质及黄瓜生长的影响[J]. 核农学报, 2014, 28(8): 1534 − 1539.

WU Chuncheng, LI Tianlai, CAO Xia, et al. Physicochemical properties of nutrition medium and cucumber growth under continuous cropping [J]. Journal of Nuclear Agricultural Sciences, 2014, 28(8): 1534 − 1539.
[27] 聂新星, 陈防. 生物炭对土壤钾素生物有效性影响的研究进展[J]. 中国土壤与肥料, 2016(2): 1 − 6.

NIE Xinxing, CHEN Fang. Advances of the effects of biochar application on soil potassium bioavailability [J]. Soil and Fertilizer Sciences in China, 2016(2): 1 − 6.
[28]

DELUCA T, GUNDALE M J, MACKENZIE M D, et al. Biochar effects on soil nutrient transformations[M]// LEHMANN F, FOSEPH S. Biochar for Environmental Management: Science and Technology. London: Earthscan Ltd. , 2009: 251 − 270.
[29]

ANGST T E, SOHI S P. Establishing release dynamics for plant nutrients from biochar [J]. GCB Bioenergy, 2013, 5: 221 − 226.
[30] 李丽, 王雪艳, 田彦芳, 等. 生物质炭对土壤养分及设施蔬菜产量与品质的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1237 − 1244.

LI Li, WANG Xueyan, TIAN Yanfang, et al. Effects of biochar on soil nutrients, yield and quality of vegetables [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1237 − 1244.
[31]

ASAI H, SAMSON B K, STEPHAN H M, et al. Biochar amendment techniques for upland rice production in Northern Laos (1) Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research, 2009, 111(1): 81 − 84.
[32] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140 − 1148.

LIU Zhengang, XIA Yu, MENG Yuhan, et al. Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: immobilization mechanism and analysis of related studies [J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1140 − 1148.
[33] 钱钱, 杨兴, 郭明, 等. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051 − 1061.

QIAN Qian, YANG Xing, GUO Ming, et al. Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil [J]. Journal of Zhejiang A&F University, 2019, 36(6): 1051 − 1061.
[34] 徐炜杰, 郭佳, 赵敏, 等. 重金属污染土壤植物根系分泌物研究进展[J]. 浙江农林大学学报, 2017, 34(6): 1137 − 1148.

XU Weijie, GUO Jia, ZHAO Min, et al. Research progress of soil plant root exudates in heavy metal contaminated soil [J]. Journal of Zhejiang A&F University, 2017, 34(6): 1137 − 1148.
[35] 郝金才, 李柱, 吴龙华, 等. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 2019, 51(4): 752 − 759.

HAO Jincai, LI Zhu, WU Longhua, et al. Preliminary study on cadmium and lead stabilization in soil highly polluted with heavy metals using different stabilizing agents [J]. Soils, 2019, 51(4): 752 − 759.
[36] 郭荣荣, 黄凡, 易晓媚, 等. 混合无机改良剂对酸性多重金属污染土壤的改良效应[J]. 农业环境科学学报, 2015, 34(4): 686 − 694.

GUO Rongrong, HUANG Fan, YI Xiaomei, et al. Remediation of multi-metals contaminated acidic soil by mixed inorganic amendments [J]. Journal of Agro-Environment Science, 2015, 34(4): 686 − 694.
[37] 朱光耀, 何丽芝, 秦鹏, 等. 施用猪炭对土壤吸附Pb2+的影响[J]. 浙江农林大学学报, 2019, 36(3): 573 − 580.

ZHU Guangyao, HE Lizhi, QIN Peng, et al. Dead pig-derived biochar treatments and soil adsorption of Pb2+ [J]. Journal of Zhejiang A&F University, 2019, 36(3): 573 − 580.
[38] 温小情, 林亲铁, 肖荣波, 等. 镁基膨润土和水泥对砷铅复合污染土壤的钝化效能与机理研究[J]. 环境科学学报, 2020, 40(9): 3397 − 3404.

WEN Xiaoqing, LIN Qintie, XIAO Rongbo, et al. Study on passivation efficiency and mechanism of Mg-bentonite and cement on As/Pb contaminated soil [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3397 − 3404.
[39] 张迪, 丁爱芳. 组配钝化剂对镉铅复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018, 37(12): 2718 − 2726.

ZHANG Di, DING Aifang. Effects of combined passivating agents on remediation of Cd and Pb compound-contaminated soil [J]. Journal of Agro-Environment Science, 2018, 37(12): 2718 − 2726.
[40] 陈新红, 叶玉秀, 潘国庆, 等. 杂交水稻不同器官重金属铅浓度与累积量[J]. 中国水稻科学, 2014, 28(1): 57 − 64.

CHEN Xinhong, YE Yuxiu, PAN Guoqing, et al. Concentration and accumlation of lead in different organs of hybrid rice [J]. Chinese Journal of Rice Science, 2014, 28(1): 57 − 64.
[41]

JEFFERY S, VERHEIJEN F G A, ven der VELDEM, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis [J]. Agriculture,Ecosystems &Environment, 2011, 144(1): 175 − 187.
[42]

BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biology &Biochemistry, 2011, 43(2): 296 − 301.
[43] 张丽娜. 微生物菌肥和中微量元素在冀西北坝上地区萝卜上的应用研究[D]. 张家口: 河北北方学院, 2017.

ZHANG Lina. Application of Microbial Bacterial Frtilizer and Medium and Trace Elements on Radish in the Bashang Area of Northwest Hebei Province[D]. Zhangjiakou: Heibei North University, 2017.
[44]

YANG Xing, LU Kouping, MCGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs [J]. Journal of Soils and Sediments, 2017, 17(3): 751 − 762.
[45]

LEBRUN M, MIARD F, NANDILLON R, et al. Biochar application rate: improving soil fertility and Linum usitatissimum growth on an arsenic and lead contaminated technosol [J]. International Journal of Environmental Research, 2021, 15(1): 125 − 134.
[46] 刘晓霞, 陈红金, 虞轶俊. 骨炭的土壤改良培肥和小萝卜增产提质效应研究[J]. 中国土壤与肥料, 2021(5): 150 − 155.

LIU Xiaoxia, CHEN Hongjin, YU Yijun. Studies on the effects of bone-biochar on soil quality promotion and radish production improvement [J]. Soil and Fertilizer Sciences in China, 2021(5): 150 − 155.