[1] 杨林章, 施卫明, 薛利红, 等. 农村面源污染治理的“4R”理论与工程实践——总体思路与“4R”治理技术[J]. 农业环境科学学报, 2013, 32(1): 1 − 8.

YANG Linzhang, SHI Weiming, XUE Lihong, et al. Reduce-retain-reuse-restore technology for the controlling the agricultural non-point source pollution in countryside in China: general countermeasures and technologies [J]. J Agro-Environ Sci, 2013, 32(1): 1 − 8.
[2] 武淑霞, 刘宏斌, 刘申, 等. 农业面源污染现状及防控技术[J]. 中国工程科学, 2018, 20(5): 23 − 30.

WU Shuxia, LIU Hongbin, LIU Shen, et al. Review of current situation of agricultural non-point source pollution and its preventionand control technologies [J]. Eng Sci, 2018, 20(5): 23 − 30.
[3] 翟敏婷, 辛卓航, 韩建旭, 等. 河流水质模拟及污染源归因分析[J]. 中国环境科学, 2019, 39(8): 3457 − 3464.

ZHAI Minting, XIN Zhuohang, HAN Jianxu, et al. Water quality simulation and multi-source attribution analysis [J]. China Environ Sci, 2019, 39(8): 3457 − 3464.
[4] 韦晓雪, 李晓琳, 郑毅. 基于输出系数模型的1998—2016年洱海流域磷素时空变化特征分析[J]. 农业环境科学学报, 2020, 39(1): 171 − 181.

WEI Xiaoxue, LI Xiaolin, ZHENG Yi. Analysis of temporal and spatial variation characteristics of phosphorus in Erhai Lake basin from 1998 to 2016 based on export coefficient model [J]. J Agro-Environ Sci, 2020, 39(1): 171 − 181.
[5] 彭亚辉, 周科平, 蒋俊伟. 湘江流域长株潭段水污染负荷时空分布规律及成因[J]. 中国农业大学学报, 2018, 23(9): 108 − 116.

PENG Yahui, ZHOU Keping, JIANG Junwei. The spatial-temporal distribution and causes of water pollution loads on Xiangjiang River Basin in Changzhutan [J]. J China Agric Univ, 2018, 23(9): 108 − 116.
[6] 刘福兴, 王俊力, 付子轼. 不同规格生态沟渠对排水污染物处理能力的研究[J]. 土壤学报, 2019, 56(3): 561 − 570.

LIU Fuxing, WANG Junli, FU Zishi. Comparative research on effects of ecological ditches different in specification treating pollutants in drainage [J]. Acta Pedol Sin, 2019, 56(3): 561 − 570.
[7]

LI Dan, ZHENG Binghui, CHU Zhaosheng, et al. Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin [J]. Bioresour Technol, 2019, 280: 295 − 302.
[8]

KUMWIMBA M N, MENG Fangang, ISEYEMI O I, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): design, mechanism, management strategies, and future directions [J]. Sci Total Environ, 2018, 639: 742 − 759.
[9] 浙江省农业农村厅. 浙江省农业绿色发展试点先行区3年行动计划(2018—2020)[EB/OL]. (2018-07-02)[2020-02-20]. http://www.zjagri.gov.cn/art/2018/7/4/art1589297_30567167.html.

Department of Agriculture and Rural Affairs of Zhejiang Province. Zhejiang Province Agricultural Green Development Pilot Three-Year (2018−2020) Plan [EB/OL]. (2018-07-02)[2020-02-20]. http://www.zjagri.gov.cn/art/2018/7/4/art1589297_30567167.html.
[10] 岑璐瑶, 陈滢, 张进, 等. 种植不同植物的人工湿地深度处理城镇污水处理厂尾水的中试研究[J]. 湖泊科学, 2019, 31(2): 365 − 374.

CEN Luyao, CHEN Ying, ZHANG Jin, et al. Pilot-scale study on advanced treatment of tail water of urban sewage treatment plant by constructed wetlands with different plants [J]. J Lake Sci, 2019, 31(2): 365 − 374.
[11] 李晓东, 孙铁珩, 李海波, 等. 人工湿地除磷研究进展[J]. 生态学报, 2007, 27(3): 1226 − 1232.

LI Xiaodong, SUN Tieheng, LI Haibo, et al. Current researches and prospects of phosphorus removal in constructed wetland [J]. Acta Ecol Sin, 2007, 27(3): 1226 − 1232.
[12] 王文林, 刘波, 韩睿明, 等. 沉水植物茎叶微界面及其对水体氮循环影响研究进展[J]. 生态学报, 2014, 34(22): 6409 − 6416.

WANG Wenlin, LIU Bo, HAN Ruiming, et al. Research advancements and perspectives on leaf and stem micro-interfaces in submerged macrophytes and its effect on water nitrogen cycling [J]. Acta Ecol Sin, 2014, 34(22): 6409 − 6416.
[13]

LIN Qinshuo, GU Binhe, HONG Jianming. Tracking uptake of submerged macrophytes (Ceratophyllum demersum): derived nitrogen by cattail (Typha angustifolia) using nitrogen stable isotope enrichments [J]. Ecol Eng, 2017, 99: 114 − 118.
[14]

LI Qi, GU Peng, JI Xiyan, et al. Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: plant structural, physicochemical and microbial properties [J]. Ecotoxicol Environ Saf, 2020, 189: 1 − 8.
[15]

ZHANG Shunan, LIU Feng, HUANG Zhenrong, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures [J]. Bioresour Technol, 2020, 301: 1 − 6.
[16]

OLESEN A, JENSON S M, ALNOEE A B, et al. Nutrient kinetics in submerged plant beds: a mesocosm study simulating constructed drainage wetlands [J]. Ecol Eng, 2018, 122: 263 − 270.
[17] 刘淼, 陈开宁. 植物配置与进水碳氮比对沉水植物塘水质净化效果的影响[J]. 环境科学, 2018, 39(6): 2706 − 2714.

LIU Miao, CHEN Kaining. Purification effect of submerged macrophyte system with different plants combinations and C/N ratios [J]. Environ Sci, 2018, 39(6): 2706 − 2714.
[18]

SAMAL K, DASH R R, BHUNIA P. Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater: a statistical and kinetic modelling approach [J]. Sci Total Environ, 2018, 645: 156 − 169.
[19]

NGUYEN X C, CHANG S W, NGUYEN T L, et al. A hybrid constructed wetland for organic-material and nutrient removal from sewage: process performance and multi-kinetic models [J]. J Environ Manage, 2018, 222: 378 − 384.
[20]

SAEED T, SUN Guangzhi. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands [J]. Water Res, 2011, 45(10): 3137 − 3152.
[21] 殷志平, 吴义锋, 吕锡武. 基于一级动力学模型的水培蔬菜滤床氮磷去除模拟[J]. 东南大学学报(自然科学版), 2016, 46(4): 812 − 817.

YIN Zhiping, WU Yifeng, LU Xiwu. Simulation of nitrogen and phosphorus removal in hydroponic vegetable filter bed based on first-order kinetics model [J]. J Southeast Univ Nat Sci Ed, 2016, 46(4): 812 − 817.
[22] 殷志平, 吴义锋, 吕锡武. 景观型与蔬菜型水平潜流湿地除磷动力学模型[J]. 化工学报, 2016, 67(5): 2048 − 2055.

YIN Zhiping, WU Yifeng, LÜ Xiwu. Kinetic modelling of total phosphorus removal in landscape type and vegetable type horizontal subsurface-flow constructed wetlands [J]. CIESC J, 2016, 67(5): 2048 − 2055.
[23] 黄硕, 于德爽, 陈光辉, 等. 氧化石墨烯强化厌氧氨氧化菌的脱氮性能[J]. 中国环境科学, 2019, 39(5): 1945 − 1953.

HUANG Shuo, YU Deshuang, CHEN Guanghui, et al. Improvement of the activity of anammox bacteria using graphene oxide [J]. China Environ Sci, 2019, 39(5): 1945 − 1953.
[24] 杨垒, 陈宁, 任勇翔, 等. 异养硝化细菌Acinetobacter junii NP1的同步脱氮除磷特性及动力学分析[J]. 环境科学, 2019, 40(8): 3713 − 3721.

YANG Lei, CHEN Ning, REN Yongxiang, et al. Simultaneous nitrogen and phosphorus removal and kinetics by the heterotrophic nitrifying bacterium Acinetobacter junii NP1 [J]. Environ Sci, 2019, 40(8): 3713 − 3721.
[25]

MU Yang, YU Hanqing, WANG Gang. A kinetic approach to anaerobic hydrogen-producing process [J]. Water Res, 2007, 41(5): 1152 − 1160.
[26] 王涛, 张维理, 张怀志. 滇池流域人工模拟降雨条件下农田施用有机肥对磷素流失的影响[J]. 植物营养与肥料学报, 2008, 14(6): 1092 − 1097.

WANG Tao, ZHANG Weili, ZHANG Huaizhi. Effects of swine manure application on P losses from different farmlands under simulated rainfall in Dianchi watershed of Yunnan Province [J]. Plant Nutr Fert Sci, 2008, 14(6): 1092 − 1097.
[27] 申东, 唐家良, 章熙峰, 等. 紫色土丘陵区农业小流域暴雨事件磷素多尺度流失特征[J]. 水土保持学报, 2017, 31(5): 56 − 63.

SHEN Dong, TANG Jialiang, ZHANG Xifeng, et al. Characteristics of phosphorus loss of small agricultural watershed during rainstorm events in hilly area of purple soil [J]. J Soil Water Conserv, 2017, 31(5): 56 − 63.
[28]

FAN Yanzhen, WANG Yingying, QIAN Peiyuan, et al. Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modelling degradation [J]. Int Biodeterior Biodegradation, 2004, 53(1): 57 − 63.
[29] 吴旻, 赵群芬. 3种沉水植物在不同污染水体中的生长及其对水质的影响[J]. 生物学杂志, 2015, 32(4): 43 − 47.

WU Min, ZHAO Qunfen. The growth of three submerged plants in different polluted water and its impact on water quality [J]. J Biol, 2015, 32(4): 43 − 47.
[30] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156 − 161.

JIN Shuquan, ZHOU Jinbo, BAO Weihong, et al. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes [J]. Environ Sci, 2017, 38(1): 156 − 161.
[31] 李琳, 岳春雷, 张华, 等. 不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学, 2019, 40(11): 4962 − 4970.

LI Lin, YUE Chunlei, ZHANG Hua, et al. Correlation between water purification capacity and bacterial community composition of different submerged macrophytes [J]. Environ Sci, 2019, 40(11): 4962 − 4970.
[32]

SUN Guangzhi, SAEED T. Kinetic modelling of organic matter removal in 80 horizontal flow reed beds for domestic sewage treatment [J]. Process Biochem, 2009, 44(7): 717 − 722.
[33]

SAEED T, SUN Guangzhi. The removal of nitrogen and organics in vertical flow wetland reactors: predictive models [J]. Bioresour Technol, 2011, 102(2): 1205 − 1213.
[34] 叶捷, 彭剑峰, 高红杰, 等. 潮汐流人工湿地低温下NH4 +-N去除模型的比较和优化[J]. 环境科学学报, 2011, 31(7): 1456 − 1463.

YE Jie, PENG Jianfeng, GAO Hongjie, et al. Comparison and optimization of a NH4 +-N removal model of a tidal-flow constructed wetland in low temperature [J]. Acta Sci Circumstantiae, 2011, 31(7): 1456 − 1463.
[35] 臧维玲, 刘永士, 戴习林, 等. 低频率运转下人工湿地对养虾水的去氮作用及其动力学[J]. 农业工程学报, 2013, 29(18): 210 − 217.

ZANG Weiling, LIU Yongshi, DAI Xilin, et al. Performance and dynamics of nitrogen removal in constructed wetlands at low frequency for shrimp culture [J]. Trans Chin Soc Agric Eng, 2013, 29(18): 210 − 217.