[1] HUANG Jianping, YU Haipeng, GUAN Xiaodan, et al. Accelerated dryland expansion under climate change [J]. Nat Clim Change, 2016, 6(2): 166 − 171.
[2] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought [J]. Nature, 2012, 491(7426): 752 − 755.
[3] 曹嘉瑜, 刘建峰, 袁泉, 等. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715 − 729.

CAO Jiayu, LIU Jianfeng, YUAN Quan, et al. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715 − 729.
[4]

CASTILLO R, VAZQUEZ A, KONKOL J L, et al. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt [J]. Tree Physiol, 2021, 41(6): 1004 − 1018.
[5]

PRISLAN P, ČUFAR K, de LUIS M, et al. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites [J]. Tree Physiol, 2018, 38(2): 186 − 197.
[6]

SKELTON R, DIAZ J. Quantifying losses of plant hydraulic function: seeing the forest, the trees and the xylem [J]. Tree Physiol, 2020, 40(3): 286 − 289.
[7]

JINLONG Y, JOSEPH M M, STEVEN J, et al. Dynamic surface tension of xylem sap lipids [J]. Tree Physiol, 2020, 40(4): 433 − 444.
[8] 李泽东, 陈志成, 曹振, 等. 华北低山丘陵区常用树种木质部解剖特征及水其力学抗旱性[J]. 生态学报, 2021, 41(1): 69 − 78.

LI Zedong, CHEN Zhicheng, CAO Zhen, et al. Xylem anatomical and hydraulic drought resistance characteristics of common tree species in hilly areas of north China [J]. Acta Ecol Sin, 2021, 41(1): 69 − 78.
[9] 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635 − 647.

LI Zhimin, WANG Chuankuan. Research progress on responses of xylem of woody plants to freeze-thaw embolism [J]. Chin J Plant Ecol, 2019, 43(8): 635 − 647.
[10]

MARTIN-BENITO D, ANCHUKAITIS K J, EVANS M N, et al. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species[J/OL]. Forests, 2017, 8(9): 332[2021-02-20]. doi: 10.3390/f8090332.
[11]

JORDAN G J, BRODRIBB T J, BLACKMAN C J, et al. Climate drives vein anatomy in Proteaceae [J]. Am J Bot, 2013, 100(8): 1483 − 1493.
[12]

CHEN Junwen, ZHANG Qiang, LI Xiaoshuang, et al. Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology [J]. Planta, 2009, 230(3): 459 − 468.
[13]

SPERRY J S. Coordinating stomatal and xylem functioning-an evolutionary perspective [J]. New Phytol, 2010, 162(3): 568 − 570.
[14]

CARLQUIST S. Wood anatomy of Onagraceae: further species; root anatomy; significance of vestured pits and allied structures in dicotyledons [J]. Ann Missouri Bot Gard, 1982, 69(4): 755 − 769.
[15]

GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species [J]. New Phytol, 2016, 209(1): 123 − 136.
[16]

MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation [J]. Ecology, 2004, 85(8): 2184 − 2199.
[17]

TYREE M T, COCHARD H, DAVIS S D. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? [J]. Iawa J, 1994, 15(4): 335 − 360.
[18]

LENS F, SPERRY J S, CHRISTMAN M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer [J]. New Phytol, 2011, 190(3): 709 − 723.
[19]

HOLSTE E K, JERKE M J, MATZNER S L. Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effects [J]. Plant Cell Environ, 2006, 29(5): 836 − 843.
[20]

MCCULLOH K A, SPERRY J S. Patterns in hydraulic architecture and their implications for transport efficiency [J]. Tree Physiol, 2005, 25(3): 257 − 267.
[21]

HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure [J]. Oecologia, 2001, 126(4): 457 − 461.
[22]

JACOBSEN A L, PRATT R B, EWERS F W, et al. Cavitation resistance among 26 chaparral species of southern California [J]. Ecol Monographs, 2007, 77(1): 99 − 115.
[23]

PRATT R B, JACOBSEN A L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics [J]. Plant Cell Environ, 2017, 40(6): 897 − 913.
[24]

SCHOLZ F G, BUCCI S J, GOLDSTEIN G. Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis [J]. Trees, 2014, 28(5): 1475 − 1487.
[25]

NOLF M, CREEK D, DUURSMA R, et al. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 2015, 38(12): 2652 − 2661.
[26]

BUCCI S J, SCHOLZ F G, GOLDSTEIN G, et al. Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand [J]. Braz J Plant Physiol, 2008, 20(3): 233 − 245.
[27]

JOHNSON D M, MCCULLOH K A, WOODRUFF D R, et al. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? [J]. Plant Sci, 2012, 195: 48 − 53.
[28]

JOHNSON D M, DOMEC J C, WOODRUFF D R, et al. Contrasting hydraulic strategies in two tropical lianas and their host trees [J]. Am J Bot, 2013, 100(2): 374 − 383.
[29]

WU Min, ZHANG Ya, OYA T, et al. Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem [J]. Plant Soil, 2020, 450(1): 479 − 495.
[30]

WRIGHT I J, REICH P B, WESTOBY M, et al. The world-wide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821 − 827.
[31]

SPERRY J S, SALIENDRA N Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis [J]. Plant Cell Environ, 2010, 17(11): 1233 − 1241.
[32] 陈志成, 姜丽娜, 冯锦霞, 等. 木本植物木质部栓塞测定技术的争议与进展[J]. 林业科学, 2018, 54(5): 143 − 151.

CHEN Zhicheng, JIANG Lina, FENG Jinxia, et al. Progress and controversy of xylem embolism determination techniques in woody plants [J]. Sci Silv Sin, 2018, 54(5): 143 − 151.
[33]

PRATT R B, JACOBSEN A L, GOLGOTIU K A, et al. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae) [J]. Ecol Monographs, 2007, 77(2): 239 − 253.
[34]

MUSTAPHA E, FABIANO S, HABIB K, et al. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? [J]. Physiol Plant, 2011, 142(3): 205 − 210.
[35]

DUURSMA R, CHOAT B. Fitplc- an R package to fit hydraulic vulnerability curves[J/OL]. J Plant Hydraul, 2017, 4: e002[2021-01-08]. doi:10.20870/jph.2017.e002.
[36]

OGLE K, BARBER J J, WILLSON C, et al. Hierarchical statistical modeling of xylem vulnerability to cavitation [J]. New Phytol, 2009, 182(2): 541 − 544.
[37]

CAI Jing, TYREE M T. Measuring vessel length in vascular plants: can we divine the truth? history, theory, methods, and contrasting models [J]. Trees, 2014, 28(3): 643 − 655.
[38]

LI Duan, SI Jianhua, ZHANG Xiaoyou, et al. The mechanism of changes in hydraulic properties of Populus euphratica in response to drought stress[J/OL]. Forests, 2019, 10(10): 904[2021-01-20]. doi: 10.3390/f10100904.
[39] 马辉英, 杨晓东, 吕光辉, 等. 新疆艾比湖湿地自然保护区荒漠优势种体内的水分来源[J]. 生态学报, 2017, 37(3): 829 − 840.

MA Huiying, YANG Xiaodong, LÜ Guanghui, et al. Water sources of dominant desert species in ebinur lake wetland nature reserve, Xinjiang, China [J]. Acta Ecol Sin, 2017, 37(3): 829 − 840.
[40]

KAVANAGH K L, BOND B J, AITKEN S N, et al. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings [J]. Tree Physiol, 1999, 19(1): 31 − 37.
[41] 陈晓远, 高志红, 罗远培. 植物根冠关系[J]. 植物生理学通讯, 2005, 41(5): 6 − 13.

CHEN Xiaoyuan, GAO Zhihong, LUO Yuanpei. Relationship between root and shoot of plants [J]. Plant Physiol Commun, 2005, 41(5): 6 − 13.
[42] 陈明涛, 赵忠. 干旱对4种苗木根系特征及各部分物质分配的影响[J]. 北京林业大学学报, 2011, 33(1): 16 − 22.

CHEN Mingtao, ZHAO Zhong. Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species [J]. J Beijing For Univ, 2011, 33(1): 16 − 22.
[43]

RODRIGUEZ-DOMINGUEZ C M, MURPHY M R C, LUCANI C, et al. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 2018, 218(3): 1025 − 1035.
[44]

CORCUERA L, COCHARD H, GIL-PELEGRIN E, et al. Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought [J]. Trees, 2011, 25(6): 1033 − 1042.
[45]

BRODERSON C R, RODDY A B, WASON J W, et al. Functional status of xylem through time [J]. Ann Rev Plant Biol, 2019, 70: 407 − 433.
[46]

REICH P B, CORNELISSEN H. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto [J]. J Ecol, 2014, 102(2): 275 − 301.
[47]

MARTíNEZ-VILALTA J, PRAT E, OLIVERAS I, et al. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species [J]. Oecologia, 2002, 133(1): 19 − 29.
[48]

SPERRY J S. Evolution of water transport and xylem structure [J]. Int J Plant Sci, 2003, 164(suppl 3): S115 − S127.