[1] HATFIELD J L, PRUEGER J H. Temperature extremes: effect on plant growth and development [J]. Weather and Climate Extremes, 2015, 10: 4−10.
[2] ZHAO Daqiu, XIA Xing, SU Jianghong, et al. Overexpression of herbaceous peony HSP70 confers high temperature tolerance[J/OL]. BMC Genomics, 2019, 20(1): 70[2025-07-25]. DOI: 10.1186/s12864-019-5448-0.
[3] LAURENT T C, MOORE E C, REICHARD P. Enzymatic synthesis of deoxyribonucleotides (Ⅳ) isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli b [J]. The Journal of Biological Chemistry, 1964, 239: 3436−3444.
[4] GEIGENBERGER P, THORMÄHLEN I, DALOSO D M, et al. The unprecedented versatility of the plant thioredoxin system [J]. Trends in Plant Science, 2017, 22(3): 249−262.
[5] BUCHANAN B B, BALMER Y. Redox regulation: a broadening horizon [J]. Annual Review of Plant Biology, 2005, 56: 187−220.
[6] HONG Suji, HUH S U. Members of the Capsicum annuum CaTrxh family respond to high temperature and exhibit dynamic hetero/homo interactions[J/OL]. International Journal of Molecular Sciences, 2024, 25(3): 1729[2025-07-25]. DOI: 10.3390/ijms25031729.
[7] ZHANG Cuijun, ZHAO Bingchun, GE Weina, et al. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice [J]. Plant Physiology, 2011, 157(4): 1884−1899.
[8] MEYER Y, BELIN C, DELORME-HINOUX V, et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance [J]. Antioxidants & Redox Signaling, 2012, 17(8): 1124−1160.
[9] PARK S K, JUNG Y J, LEE J R, et al. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone [J]. Plant Physiology, 2009, 150(2): 552−561.
[10] 李巧云, 牛洪斌, 王孟本, 等. 过量表达Trxs对铝胁迫下转基因大麦幼苗根系抗氧化酶系的影响[J]. 麦类作物学报, 2007, 27(6): 1111−1116.

LI Qiaoyun, NIU Hongbin, WANG Mengben, et al. Effects of overexpressing Trxs on antioxidant enzymes activities in transgenic barley seedling roots under aluminum stress [J]. Journal of Triticeae Crops, 2007, 27(6): 1111−1116.
[11]

YOKOCHI Y, FUKUSHI Y, WAKABAYASHI K I, et al. Oxidative regulation of chloroplast enzymes by thioredoxin and thioredoxin-like proteins in Arabidopsis thaliana[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(51): e2114952118[2025-07-25]. DOI: 10.1073/pnas.2114952118.
[12]

LAUGHNER B J, SEHNKE P C, FERL R J. A novel nuclear member of the thioredoxin superfamily [J]. Plant Physiology, 1998, 118(3): 987−996.
[13]

CHA J Y, AHN G, JEONG S Y, et al. Nucleoredoxin 1 positively regulates heat stress tolerance by enhancing the transcription of antioxidants and heat-shock proteins in tomato [J]. Biochemical and Biophysical Research Communications, 2022, 635: 12−18.
[14]

KUMAR T A, CHARAN T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat [J]. Plant Physiology, 1998, 117(3): 851−858.
[15] 申惠翡, 赵冰. 杜鹃花品种耐热性评价及其生理机制研究[J]. 植物生理学报, 2018, 54(2): 335−345.

SHEN Huifei, ZHAO Bing. Study on evaluation of heat tolerance and its physiological mechanisms in Rhododendron cultivars [J]. Plant Physiology Journal, 2018, 54(2): 335−345.
[16]

SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, Cell & Environment, 2012, 35(2): 259−270.
[17] 赵静珂. 辣椒对热胁迫的生理响应及耐热相关基因功能验证[D]. 郑州: 河南农业大学, 2024.

ZHAO Jingke. Physiological Response of Pepper to Heat Stress and Functional Verification of Heat Tolerance Related Gene[D]. Zhengzhou: Henan Agricultural University, 2024.
[18]

BOKSZCZANIN K. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance[J/OL]. Frontiers in Plant Science, 2013, 4: 315[2025-07-25]. DOI: 10.3389/fpls.2013.00315.
[19]

WANG Yunlong, WANG Yihua, REN Yulong, et al. White panicle2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice [J]. New Phytologist, 2021, 229(5): 2693−2706.
[20] 夏德习. 拟南芥硫氧还蛋白基因在逆境胁迫下的功能解析[D]. 哈尔滨: 东北林业大学, 2007.

XIA Dexi. The Functional of Thioredoxin Henes in Arabidopsis thaliana Under Environmental Stress[D]. Harbin: Northeast Forestry University, 2007.
[21] 陈虎, 高原, 孙家猛, 等. 大麦典型硫氧还蛋白(TRX)基因家族鉴定与生物信息学分析[J]. 作物杂志, 2025(2): 66−73.

CHEN Hu, GAO Yuan, SUN Jiameng, et al. Identification and bioinformatics analysis of the typical thioredoxin (TRX) gene family in barley [J]. Crops, 2025(2): 66−73.
[22]

ZHANG Shuangxing, YU Yang, SONG Tianqi, et al. Genome-wide identification of foxtail millet’s TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis[J/OL]. Frontiers in Plant Science, 2022, 13: 946037[2025-07-25]. DOI: 10.3389/fpls.2022.946037.
[23]

TONG Lu, LIN Mengyuan, ZHU Liming, et al. Unraveling the role of the Liriodendron thioredoxin (TRX) gene family in an abiotic stress response[J/OL]. Plants, 2024, 13(12): 1674[2025-07-25]. DOI: 10.3390/plants13121674.
[24]

YOSHIDA K, HISABORI T. Current insights into the redox regulation network in plant chloroplasts [J]. Plant & Cell Physiology, 2023, 64(7): 704−715.
[25]

SUGIYAMA T, YOSHIDA K. Diversity and distribution of thioredoxin family proteins in photosynthetic organisms[J/OL]. Plant & Cell Physiology, 2025: pcaf073[2025-07-25]. DOI: 10.1093/pcp/pcaf073.
[26]

SELMA S. Guardians of the light: the redox regulation of the PSI during photosynthesis[J/OL]. Plant Physiology, 2024, 197: kiae482[2025-07-25]. DOI: 10.1093/plphys/kiae482.
[27]

FUKUSHI Y, YOKOCHI Y, HISABORI T, et al. Overexpression of thioredoxin-like protein ACHT2 leads to negative feedback control of photosynthesis in Arabidopsis thaliana [J]. Journal of Plant Research, 2024, 137(3): 445−453.
[28]

MALLÉN-PONCE M J, FLORENCIO F J, HUERTAS M J. Thioredoxin A regulates protein synthesis to maintain carbon and nitrogen partitioning in Cyanobacteria [J]. Plant Physiology, 2024, 195(4): 2921−2936.
[29]

MURATA N, TAKAHASHI S, NISHIYAMA Y, et al. Photoinhibition of photosystem Ⅱ under environmental stress [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(6): 414−421.
[30]

RIPOLL J, BERTIN N, BIDEL L P R, et al. A user’s view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: perspectives for analyzing stress[J/OL]. Frontiers in Plant Science, 2016, 7: 1679[2025-07-25]. DOI: 10.3389/fpls.2016.01679.
[31]

GOVINDJE E. Sixty-three years since Kautsky: chlorophyll a fluorescence[J/OL]. Functional Plant Biology, 1995, 22(2): 131[2025-07-25]. DOI: 10.1071/pp9950131.
[32]

SCHANSKER G, TÓTH S Z, STRASSER R J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side [J]. Biochimica et Biophysica Acta, 2006, 1757(7): 787−797.
[33]

KALAJI H M, JAJOO A, OUKARROUM A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J/OL]. Acta Physiologiae Plantarum, 2016, 38(4): 102[2025-07-25]. DOI: 10.1007/s11738-016-2113-y.
[34]

ZIVCAK M, KALAJI H M, SHAO Hongbo, et al. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress [J]. Journal of Photochemistry and Photobiology B, Biology, 2014, 137: 107−115.
[35]

OUKARROUM A, BUSSOTTI F, GOLTSEV V, et al. Correlation between reactive oxygen species production and photochemistry of photosystems Ⅰ and Ⅱ in Lemna gibba L. plants under salt stress [J]. Environmental and Experimental Botany, 2015, 109: 80−88.