[1] HUANG Bin, CHEN Huangqin, SHAO Nongquan. The ethanol extract of Osmanthus fragrans attenuates Porphyromonas gingivalis lipopolysaccharide-stimulated inflammatory effect through the nuclear factor erythroid 2-related factor-mediated antioxidant signalling pathway [J]. Archives of Oral Biology, 2015, 60(7): 1030 − 1038.
[2] 王英, 张超, 付建新, 等. 桂花花芽分化和花开放研究进展[J]. 浙江农林大学学报, 2016, 33(2): 340 − 347.

WANG Ying, ZHANG Chao, FU Jianxin, et al. Progresses on flower bud differentiation and flower opening in Osmanthus fragrans [J]. Journal of Zhejiang A&F Uinversity, 2016, 33(2): 340 − 347.
[3]

LI Haiyan, YUE Yuanzheng, DING Wenjie, et al. Genome-wide identification, classification, and expression profiling reveals R2R3-MYB transcription factors related to monoterpenoid biosynthesis in Osmanthus fragrans [J/OL]. Genes, 2020, 11(4): 353[2022-07-01]. doi: 10.3390/genes11040353.
[4]

FU Jianxin, HOU Dan, WANG Yiguang, et al. Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography-mass spectrometry [J]. Horticulture,Environment,and Biotechnology, 2019, 60(4): 611 − 623.
[5]

XIN Haiping, WU Benhong, ZHANG Haohao, et al. Characterization of volatile compounds in flowers from four groups of sweet osmanthus (Osmanthus fragrans) cultivars [J]. Canadian Journal of Plant Science, 2013, 93(5): 923 − 931.
[6] 孙宝军, 李黎, 韩远记, 等. 上海桂林公园桂花芳香成分的HS-SPME-GC-MS分析[J]. 福建林学院学报, 2012, 32(1): 39 − 42.

SUN Baojun, LI Li, HAN Yuanji, et al. HS-SPME-GC-MS analysis of different Osmanthus fragrans cultivars from Guilin Garden in Shanghai [J]. Journal of Fujian College of Forestry, 2012, 32(1): 39 − 42.
[7]

ZOU Jingjing, CAI Xuan, ZENG Xiangling, et al. Characterization of aroma-active compounds from sweet osmanthus (Osmanthus fragrans) by SDE and SPME coupled with GC-MS and GC-olfactometry [J]. International Journal of Agriculture and Biology, 2019, 22(2): 277 − 282.
[8]

YANG Xiulian, YUE Yuanzheng, LI Haiyan, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans [J/OL]. Horticulture Research, 2018, 5: 72[2022-07-01]. doi 10.1038/s41438-018-0108-0.
[9]

CAI Xuan, MAI Rongzhang, ZOU Jingjing, et al. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS [J]. Journal of Zhejiang University-Science B (Biomedicine &Biotechnology), 2014, 15(7): 638 − 648.
[10]

AHARONI A, GALILI G. Metabolic engineering of the plant primary-secondary metabolism interface [J]. Current Opinion in Biotechnology, 2011, 22(2): 239 − 244.
[11] 岳跃冲, 范燕萍. 植物萜类合成酶及其代谢调控的研究进展[J]. 园艺学报, 2011, 38(2): 379 − 388.

YUE Yuechong, FAN Yanping. The terpene synthases and regulation of terpene metabolism in plants [J]. Acta Horticulture Sinica, 2011, 38(2): 379 − 388.
[12]

HAN Yuanji, WU Miao, CAO Liya, et al. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans [J]. Plant Molecular Biology, 2016, 91(4/5): 485 − 496.
[13]

HAN Yuanji, WANG Hongyun, WANG Xiaodan, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, beta-ionone and linalool [J/OL]. Horticulture Research, 2019, 6: 106[2022-07-01]. doi: 10.1038/s41438-019-0189-4.
[14]

DING Wenjie, OUYANG Qixia, LI Yuli, et al. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis [J]. Tree Physiology, 2020, 40(4): 557 − 572.
[15]

ROSINSKI J A, ATCHLEY W R. Molecular evolution of the MYB family of transcription factors: evidence for polyphyletic origin [J]. Journal of Molecular Evolution, 1998, 46(1): 74 − 83.
[16]

KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways [J]. Trends in Plant Science, 2005, 10(5): 236 − 242.
[17]

NESI N, JOND C, DEBEAUJON I, et al. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed [J]. Plant Cell, 2001, 13(9): 2099 − 2114.
[18]

DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis [J]. Trends in Plant Science, 2010, 15(10): 573 − 581.
[19]

WANG Lining, HUANG Qinghua, ZHANG Liulian, et al. Genome-wide characterization and comparative analysis of MYB transcription factors in Ganoderma species [J]. G3: Genes, Genomes, Genetics, 2020, 10(8): 2653 − 2660.
[20]

COLQUHOUN T A, KIM J Y, WEDDE A E, et al. PhMYB4 fine-tunes the floral volatile signature of Petunia×hybrida through PhC4H [J]. Journal of Experimental Botany, 2011, 62(3): 1133 − 1143.
[21]

SPITZER-RIMON B, FARHI M, ALBO B, et al. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia [J]. The Plant Cell, 2012, 24(12): 5089 − 5105.
[22]

ZVI M M B, SHKLARMAN E, MASCI T, et al. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers [J]. New Phytologist, 2012, 195(2): 335 − 345.
[23]

WANG Qian, REDDY V A, PANICKER D, et al. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata) [J]. Plant Biotechnology Journal, 2016, 14(7): 1619 − 1632.
[24]

REDDY V A, WANG Q, DHAR N, et al. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS. LSU) [J]. Plant Biotechnology Journal, 2017, 15(9): 1105 − 1119.
[25]

ABBAS F, KE Yanguo, ZHOU Yiwei, et al. Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium [J/OL]. Frontiers in Plant Science, 2021, 12: 623742[2022-07-01]. doi: 10.3389/fpls.2021.623742.
[26]

YONG Yubing, ZHANG Yue, LYU Yingmin. A MYB-related transcription factor from Lilium lancifolium L. (LlMYB3) is involved in anthocyanin biosynthesis pathway and enhances multiple abiotic stress tolerance in Arabidopsis thaliana [J/OL]. International Journal of Molecular Sciences, 2019, 20(13): 3195[2022-07-01]. doi: 10.3390/ijms20133195.
[27]

YANG Xiulian, LI Haiyan, YUE Yuanzheng, et al. Transcriptomic analysis of the candidate genes related to aroma formation in Osmanthus fragrans [J/OL]. Molecules, 2018, 23(7): 1604[2022-07-01]. doi: 10.3390/molecules23071604.
[28] 杨康民, 朱文江, 蒋永明, 等. 桂花开花物候期的划分及其采收期的调查研究[J]. 园艺学报, 1986, 13(4): 57 − 61.

YANG Kangmin, ZHU Wenjiang, JIANG Yongming, et al. Study on the division of flowering phenological period and its harvesting period of Osmanthus fragrans [J]. Acta Horticulture Sinica, 1986, 13(4): 57 − 61.
[29]

YUE Yuanzheng, DU Juhua, LI Ya, et al. Insight into the petunia Dof transcription factor family reveals a new regulator of male-sterility [J/OL]. Industrial Crops & Products, 2021, 161[2022-07-01]. doi:10.1016/j.indcrop.2020.113196.
[30] 欧阳绮霞, 丁文杰, 吴秀怡, 等. 桂花RAP2-12基因的克隆与表达模式分析[J]. 西北植物学报, 2020, 40(8): 1267 − 1276.

OUYANG Qixia, DING Wenjie, WU Xiuyi, et al. Cloning and expression characteristic analysisof RAP2-12 in Osmanthus fragrans [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1267 − 1276.
[31]

ZHANG Chao, FU Jianxin, WANG Yiguang, et al. Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet osmanthus (Osmanthus fragrans Lour. ) [J/OL]. PLoS One, 2015, 10(8): e0136355[2022-07-01]. doi: 10.1371/journal.pone.0136355.
[32]

JI Xiaoyue. Comparative investigation of volatile components and bioactive compounds in beers by multivariate analysis [J]. Flavour and Fragrance Journal, 2021, 36(3): 374 − 383.
[33]

JI Xiaoyue. Comparative analysis of volatile organic compounds and bioactive compounds in typical coniferous and broad-leaved tree species [J]. Journal of Essential Oil Bearing Plants, 2020, 23(5): 1105 − 1117.
[34]

JIAN Wei, CAO Haohao, YUAN Shu, et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits [J/OL]. Horticulture Research, 2019, 6: 22[2022-07-01]. doi: 10.1038/s41438-018-0098-y.
[35]

ZHAO Pincang, HOU Shenglin, GUO Xiufang, et al. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress [J/OL]. BMC Plant Biology, 2019, 19(1): 564[2022-07-01]. doi: 10.1186/s12870-019-2159-2.
[36]

RIECHMANN J L, RATCLIFFE O J. A genomic perspective on plant transcription factors [J]. Current Opinion in Plant Biology, 2000, 3(5): 423 − 434.
[37] 刘彻, 姚盼盼, 宋皓, 等. 烟草1R MYB转录因子亚家族鉴定与分析[J]. 植物生理学报, 2022, 58(5): 904 − 918.

LIU Che, YAO Panpan, SONG Hao, et al. Identification and analysis of 1R MYB transcription factor subfamily in tobacco [J]. Plant Physiology Journal, 2022, 58(5): 904 − 918.
[38] 曾祥玲, 章晓琴, 邹晶晶, 等. 基于cDNA-AFLP分析桂花开花进程中差异表达基因[J]. 广西植物, 2019, 39(7): 940 − 950.

ZENG Xiangling, ZHANG Xiaoqin, ZOU Jingjing, et al. cDNA-AFLP analysis of differentially expressed genes during flowering in Osmanthus fragrans [J]. Guihuia, 2019, 39(7): 940 − 950.
[39]

LIU Fei, XIAO Zhina, YANG Li, et al. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers [J]. New Phytologist, 2017, 215(4): 1490 − 1502.