| [1] | LI Xue, LI Ping, ZHENG Tangchun, et al. Genomic insights into the important ornamental and stress resistance traits of Prunus mume[J]. Scientia Horticulturae, 2022, 302: 111179. DOI: 10.1016/j.scienta.2022.111179. |
| [2] | 王兵, 赵会纳, 余婧, 等. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14−22. WANG Bing, ZHAO Huina, YU Jing, et al. Research progress in the regulation of plant branch development[J]. Biotechnology Bulletin, 2023, 39(5): 14−22. DOI: 10.13560/j.cnki.biotech.bull.1985.2022-1112. WANG Bing, ZHAO Huina, YU Jing, et al. Research progress in the regulation of plant branch development[J]. Biotechnology Bulletin, 2023, 39(5): 14−22. |
| [3] | XIONG Shifa, WANG Yangdong, CHEN Yicun, et al. The sucrose regulation of plant shoot branching[J]. Horticulturae, 2024, 10(12): 1348. DOI: 10.3390/horticulturae10121348. |
| [4] | 陈尚昱, 宋雪薇, 齐振宇, 等. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690−703. CHEN Shangyu, SONG Xuewei, QI Zhenyu, et al. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690−703. DOI: 10.3969/j.issn.1004-1524.20231066. CHEN Shangyu, SONG Xuewei, QI Zhenyu, et al. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690−703. |
| [5] | LUO Zhiwei, JANSSEN B J, SNOWDEN K C. The molecular and genetic regulation of shoot branching[J]. Plant Physiology, 2021, 187(3): 1033−1044. DOI: 10.1093/plphys/kiab071. |
| [6] | 李丽冰, 李威涛, 刘依柔, 等. 植物分枝形成及影响分枝数主要因素的研究进展[J]. 植物遗传资源学报, 2024, 25(12): 2009−2019. LI Libing, LI Weitao, LIU Yirou, et al. Research progress on branching formation and the main factors affecting branching number in plants[J]. Journal of Plant Genetic Resources, 2024, 25(12): 2009−2019. DOI: 10.13430/j.cnki.jpgr.20240315001. LI Libing, LI Weitao, LIU Yirou, et al. Research progress on branching formation and the main factors affecting branching number in plants[J]. Journal of Plant Genetic Resources, 2024, 25(12): 2009−2019. |
| [7] | CAO Da, CHABIKWA T, BARBIER F, et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth[J]. Plant Physiology, 2023, 192(2): 1420−1434. DOI: 10.1093/plphys/kiad034. |
| [8] | XIA Xiaojian, DONG Han, YIN Yanling, et al. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2004384118. DOI: 10.1073/pnas.2004384118. |
| [9] | WANG Lei, WANG Bing, YU Hong, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis[J]. Nature, 2020, 583(7815): 277−281. DOI: 10.1038/s41586-020-2382-x. |
| [10] | XIE Yurong, LIU Yang, MA Mengdi, et al. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J]. Nature Communications, 2020, 11: 1955. DOI: 10.1038/s41467-020-15893-7. |
| [11] | LUO Le, ZHANG Yali, XU Guohua. How does nitrogen shape plant architecture[J]. Journal of Experimental Botany, 2020, 71(15): 4415−4427. DOI: 10.1093/jxb/eraa187. |
| [12] | PANDA D, MISHRA S S, BEHERA P K. Drought tolerance in rice: focus on recent mechanisms and approaches[J]. Rice Science, 2021, 28(2): 119−132. DOI: 10.1016/j.rsci.2021.01.002. |
| [13] | YANG Yujie, AHMAD S, YANG Qingqing, et al. Decapitation experiments combined with the transcriptome analysis reveal the mechanism of high temperature on Chrysanthemum axillary bud formation[J]. International Journal of Molecular Sciences, 2021, 22(18): 9704. DOI: 10.3390/ijms22189704. |
| [14] | HOLBROOK-SMITH D, TOH S, TSUCHIYA Y, et al. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica[J]. Nature Chemical Biology, 2016, 12(9): 724−729. DOI: 10.1038/nchembio.2129. |
| [15] | DONG Han, WANG Jiachun, SONG Xuewei, et al. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(16): e2301879120. DOI: 10.1073/pnas.2301879120. |
| [16] | MARTÍN-TRILLO M, GRANDÍO E G, SERRA F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching[J]. The Plant Journal, 2011, 67(4): 701−714. DOI: 10.1111/j.1365-313X.2011.04629.x. |
| [17] | GUO Yongfeng, GAN Susheng. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis[J]. Plant Physiology, 2011, 156(3): 1612−1619. DOI: 10.1104/pp.111.177022. |
| [18] | ISHIZAKI T, UEDA Y, TAKAI T, et al. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency[J]. Plant Science, 2023, 330: 111627. DOI: 10.1016/j.plantsci.2023.111627. |
| [19] | WEI Hongbin, LUO Mengting, DENG Jiao, et al. SPL16 and SPL23 mediate photoperiodic control of seasonal growth in Populus trees[J]. New Phytologist, 2024, 241(4): 1646−1661. DOI: 10.1111/nph.19485. |
| [20] | MAO Chanjuan, HE Jianmei, LIU Lina, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal, 2020, 18(2): 429−442. DOI: 10.1111/pbi.13209. |
| [21] | HU Jie, HU Xiaotong, YANG Yang, et al. Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1[J]. Plant Physiology, 2022, 188(1): 255−267. DOI: 10.1093/plphys/kiab487. |
| [22] | YAO Huanyu, YANG Tianyin, QIAN Jie, et al. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in Petunia[J]. Genes, 2022, 13(5): 855. DOI: 10.3390/genes13050855. |
| [23] | JOFUKU K D, den BOER B G, MONTAGU M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9): 1211−1225. DOI: 10.2307/3869820. |
| [24] | ZHANG Jing, LIAO Jiayao, LING Qiqi, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics, 2022, 23(1): 125. DOI: 10.1186/s12864-022-08345-7. |
| [25] | MA Shiwei, LIN Qiuxiang, WU Ti, et al. EjCBF3 conferred cold-resistance through the enhancement of antioxidase activity in loquat (Eriobotrya japonica Lindl. )[J]. Scientia Horticulturae, 2024, 337: 113556. DOI: 10.1016/j.scienta.2024.113556. |
| [26] | CHENG Cheng, AN Likun, LI Fangzhe, et al. Wide-range portrayal of AP2/ERF transcription factor family in maize (Zea mays L. ) development and stress responses[J]. Genes, 2023, 14(1): 194. DOI: 10.3390/genes14010194. |
| [27] | YU Yang, YU Ming, ZHANG Shuangxing, et al. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses[J]. International Journal of Molecular Sciences, 2022, 23(6): 3272. DOI: 10.3390/ijms23063272. |
| [28] | 黄奕孜, 钱旺, 邱姗, 等. 光皮桦AP2/ERF基因家族鉴定与表达分析[J]. 浙江农林大学学报, 2022, 39(6): 1183−1193. HUANG Yizi, QIAN Wang, QIU Shan, et al. Identification and expression analysis of AP2/ERF gene family in Betula luminifera[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1183−1193. DOI: 10.11833/j.issn.2095-0756.20220331. HUANG Yizi, QIAN Wang, QIU Shan, et al. Identification and expression analysis of AP2/ERF gene family in Betula luminifera[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1183−1193. |
| [29] | ZHOU Jinggeng, MU Qiao, WANG Xiaoyang, et al. Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis[J]. The Plant Cell, 2022, 34(8): 3066−3087. DOI: 10.1093/plcell/koac139. |
| [30] | YU Li, YAO Min, MAO Lianlian, et al. Rice DSP controls stigma, panicle and tiller primordium initiation[J]. Plant Biotechnology Journal, 2023, 21(11): 2358−2373. DOI: 10.1111/pbi.14137. |
| [31] | QI Weiwei, SUN Fan, WANG Qianjie, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene[J]. Plant Physiology, 2011, 157(1): 216−228. DOI: 10.1104/pp.111.179945. |
| [32] | RIGAL A, YORDANOV Y S, PERRONE I, et al. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1controls the formation of adventitious root primordia in poplar[J]. Plant Physiology, 2012, 160(4): 1996−2006. DOI: 10.1104/pp.112.204453. |
| [33] | 王梦迪, 梁佳惠, 潘文强, 等. 乙烯响应因子LlERF12调控卷丹珠芽发生机制的初步解析[J]. 中国农业大学学报, 2025, 30(2): 80−93. WANG Mengdi, LIANG Jiahui, PAN Wenqiang, et al. Preliminary analysis of the mechanism of ethylene response factor LlERF12 regulating bulbil formation in Lilium lancifolium[J]. Journal of China Agricultural University, 2025, 30(2): 80−93. DOI: 10.11841/j.issn.1007-4333.2025.02.08. WANG Mengdi, LIANG Jiahui, PAN Wenqiang, et al. Preliminary analysis of the mechanism of ethylene response factor LlERF12 regulating bulbil formation in Lilium lancifolium[J]. Journal of China Agricultural University, 2025, 30(2): 80−93. |
| [34] | 卢勇杰, 夏海乾, 李永铃, 等. 烟草AP2/ERF转录因子NtESR2的克隆及功能分析[J]. 生物技术通报, 2025(4): 266−277. LU Yongjie, XIA Haiqian, LI Yongling, et al. Cloning and expression analysis of AP2/ERF transcription factor NtESR2 in Nicotiana tabacum[J]. Biotechnology Bulletin, 2025(4): 266−277. DOI: 10.13560/j.cnki.biotech.bull.1985.2024-0894. LU Yongjie, XIA Haiqian, LI Yongling, et al. Cloning and expression analysis of AP2/ERF transcription factor NtESR2 in Nicotiana tabacum[J]. Biotechnology Bulletin, 2025(4): 266−277. |
| [35] | MEHRNIA M, BALAZADEH S, ZANOR M I, et al. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis[J]. Plant Physiology, 2013, 162(2): 842−857. DOI: 10.1104/pp.113.214049. |
| [36] | KULUEV B R, KNIAZEV A V, IL’IASOVA A A, et al. Ectopic expression of the PnANTL1 and PnANTL2 black poplar genes in transgenic tobacco plants[J]. Genetika, 2012, 48(10): 1162−1170. DOI: 10.1134/S1022795412100031. |
| [37] | LYU Jinyang, GUO Yuan, DU Chunlei, et al. BnERF114. A1, a rapeseed gene encoding APETALA2/ETHYLENE RESPONSE FACTOR regulates plant architecture through auxin accumulation in the apex in Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(4): 2210. DOI: 10.3390/ijms23042210. |
| [38] | LAKEHAL A, DOB A, RAHNESHAN Z, et al. ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis[J]. New Phytologist, 2020, 228(5): 1611−1626. DOI: 10.1111/nph.16794. |
| [39] | YE Binbin, SHANG Guandong, PAN Yu, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration[J]. The Plant Cell, 2020, 32(1): 226−241. DOI: 10.1105/tpc.19.00378. |
| [40] | DU Dongliang, HAO Ruijie, CHENG Tangren, et al. Genome-wide analysis of the AP2/ERF gene family in Prunus mume[J]. Plant Molecular Biology Reporter, 2013, 31(3): 741−750. DOI: 10.1007/s11105-012-0531-6. |
| [41] | ZHANG Qixiang, CHEN Wenbin, SUN Lidan, et al. The genome of Prunus mume[J]. Nature Communications, 2012, 3: 1318. DOI: 10.1038/ncomms2290. |
| [42] | BANNO H, IKEDA Y, NIU Q W, et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration[J]. The Plant Cell, 2001, 13(12): 2609−2618. DOI: 10.1105/tpc.010234. |
| [43] | HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1026−1030. DOI: 10.1038/nature08258. |
| [44] | NIE Jing, WEN Chao, XI Lin, et al. The AP2/ERF transcription factor CmERF053 of Chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance[J]. Plant Cell Reports, 2018, 37(7): 1049−1060. DOI: 10.1007/s00299-018-2290-9. |
| [45] | WANG Yi, STRAUSS S, LIU Shanda, et al. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity[J]. Current Biology, 2022, 32(17): 3773−3784. DOI: 10.1016/j.cub.2022.08.020. |
| [46] | WANG Kaitong, ZHANG Huanhuan, WEI Han, et al. Roles of TCP transcription factors in plant growth and development[J]. Physiologia Plantarum, 2025, 177(4): e70357. DOI: 10.1111/ppl.70357. |