[1] LEI Xiangdong, PENG Changhui, WANG Haiyan, et al. Individual height-diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada [J]. The Forestry Chronicle, 2009, 85(1): 43 − 56.
[2] PATRICIO M S, DIAS C R G, NUNES L. Mixed-effects generalized height-diameter model: a tool for forestry management of young sweet chestnut stands [J/OL]. Forest Ecology and Management, 2022, 514: 120209[2023-06-05]. doi: 10.1016/j.foreco.2022.120209.
[3] CHAI Zongzheng, TAN Wei, LI Yuanyuan, et al. Generalized nonlinear height-diameter models for a Cryptomeria fortunei plantation in the Pingba Region of Guizhou Province, China [J]. Web Ecology, 2018, 18(1): 29 − 35.
[4] EERIKAINEN K. Predicting the height-diameter pattern of planted Pinus kesiya stands in Zambia and Zimbabwe [J]. Forest Ecology and Management, 2003, 175(1/3): 355 − 366.
[5] 贾炜玮, 孙赫明, 李凤日. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 2019, 30(3): 814 − 822.

JIA Weiwei, SUN Heming, LI Fengri. Prediction model system with dummy variables for carbon storage of larch plantation in Heilongjiang Province, China [J]. Chinese Journal of Applied Ecology, 2019, 30(3): 814 − 822.
[6] 粟军. 利用一元线性回归方程计算盗伐林木材积试验[J]. 林业调查规划, 2017, 42(5): 14 − 19.

SU Jun. Timber volume calculation of Illegal logging with unary linear regression equation [J]. Forestry Investigation and Planning, 2017, 42(5): 14 − 19.
[7] 何潇, 周超凡, 雷相东, 等. 长白落叶松人工林林分碳储量生长模型系研究[J]. 北京林业大学学报, 2021, 43(11): 1 − 10.

HE Xiao, ZHOU Chaofan, LEI Xiangdong, et al. Study on carbon storage growth model of Larch larix plantation [J]. Journal of Beijing Forestry University, 2021, 43(11): 1 − 10.
[8] 娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径-树高模型[J]. 林业科学, 2017, 53(6): 67 − 76.

LOU Minghua, ZHANG Huiru, LEI Xiangdong, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation [J]. Scientia Forestry Sinica, 2017, 53(6): 67 − 76.
[9]

ZHANG Lianjun, MA Zhihai, GUO Luo. Spatially assessing model errors of four regression techniques for three types of forest stands [J]. Forestry, 2008, 81(2): 209 − 225.
[10]

LU Junfeng, ZHANG Lianjuan. Modeling and prediction of tree height-diameter relationships using spatial autoregressive models [J]. Forest Science, 2011, 57(3): 252 − 264.
[11]

GUISAN A, EDWARDS T C, HASTIE T. Generalized linear and generalized additive models in studies of species distributions: setting the scene [J]. Ecological Modelling, 2002, 157(2/3): 89 − 100.
[12] 姜立春, 张锐, 李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012, 48(5): 53 − 60.

JIANG Lichun, ZHANG Rui, LI Fengri. Modeling branch length and branch angle with linear mixed effects for Dahurian larch [J]. Scientia Silvae Sinicae, 2012, 48(5): 53 − 60.
[13] 许崇华, 崔珺, 黄兴召, 等. 基于线性混合效应模型的杉木树高-胸径模型[J]. 西北农林科技大学学报(自然科学版), 2017, 45(6): 53 − 60.

XU Chonghua, CUI Jun, HUANG Xingzhao, et al. Height-DBH model of Chinese fir based on linear mixed effects model [J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(6): 53 − 60.
[14] 李泽坤, 任丽燕, 马仁锋, 等. 基于时空地理加权回归模型的浙江省碳排放时空格局及驱动因素分析[J]. 宁波大学学报(理工版), 2021, 34(6): 105 − 113.

LI Zekun, REN Liyan, MA Renfeng, et al. Analysis of spatial-temporal pattern and driving factors of carbon emissions in Zhejiang Province based on spatial-temporal geographic weighted regression model [J]. Journal of Ningbo University (Science and Technology Edition), 2021, 34(6): 105 − 113.
[15] 陈科屹, 张会儒, 张博, 等. 基于地理加权回归拓展模型的天然次生林碳储量空间分布[J]. 应用生态学报, 2021, 32(4): 1175 − 1183.

CHEN Keyi, ZHANG Huiru, ZHANG Bo, et al. Spatial distribution of carbon storage in natural secondary forests based on geographically weighted regression expansion model [J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1175 − 1183.
[16] 吴子豪, 刘耀林, 冯向阳, 等. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573 − 587.

WU Zihao, LIU Yaolin, FENG Xiangyang, et al. Analysis of local influencing factors of cadmium pollution in soil by using multi-scale geographically weighted regression [J]. Journal of Geo-Information Science, 2023, 25(3): 573 − 587.
[17] 李鹏, 杨章旗, 颜培栋, 等. 不同混交比例马尾松和红锥人工混交林水土流失特征和土壤理化性质[J]. 中南林业科技大学学报, 2022, 42(4): 104 − 116.

LI Peng, YANG Zhangqi, YAN Peidong, et al. Quality evaluation of mixed plantations of Pinus massoniana and Castanopsis hystrix based on the soil erosion characteristics and soil physical and chemical properties [J]. Journal of Central South University of Forestry and Technology, 2022, 42(4): 104 − 116.
[18] 李志辉, 李柏海, 祁承经, 等. 我国南方珍贵用材树种资源的重要性及其发展策略[J]. 中南林业科技大学学报, 2012, 32(11): 1 − 8.

LI Zhihui, LI Bohai, QI Chengjing, et al. Studies on importance of valuable wood species resources and its development strategy [J]. Journal of Central South University of Forestry &Technology, 2012, 32(11): 1 − 8.
[19] 陈黑虎. 马尾松、木荷混交林生长效果分析[J]. 安徽农学通报, 2014, 20(17): 105 − 107, 121.

CHEN Heihu. Analysis on the growth effect of masson pine and Schima superba mixed forest [J]. Anhui Agricultural Science Bulletin, 2014, 20(17): 105 − 107, 121.
[20]

TIAN Dongyuan, JIANG Lichun, SHAHZAD M K, et al. Climate-sensitive tree height-diameter models for mixed forests in Northeastern China [J/OL]. Agricultural and Forest Meteorology, 2022, 326: 109182[2023-06-10]. doi: 10.1016/j.agrformet.2022.109182.
[21] 孙拥康, 汤景明, 王怡. 基于分位数回归的马尾松青冈栎混交林树高-胸径模型[J]. 中南林业科技大学学报, 2021, 41(12): 18 − 25.

SUN Yongkang, TANG Jingming, WANG Yi. Height-diameter model of Pinus massoniana and Cyclobalanopsis glauca mixed forest based on quantile regression [J]. Journal of Central South University of Forestry and Technology, 2021, 41(12): 18 − 25.
[22] 李方兴, 张意苗, 易伟东, 等. 马尾松、木荷纯林及混交林的生长差异分析[J]. 南方林业科学, 2016, 44(5): 17 − 20.

LI Fangxing, ZHANG Yimiao, YI Weidong, et al. Analysis on growth differences between mixed plantations of Pinus massoniana and Schima superba and their pure plantation [J]. Scientia Forestry Sinica of Southern China, 2016, 44(5): 17 − 20.
[23] 黎芳, 潘萍, 宁金魁, 等. 马尾松-木荷不同比例混交林林下植被物种组成及其多样性分析[J]. 西北林学院学报, 2016, 31(6): 34 − 40.

LI Fang, PAN Ping, NING Jinkui, et al. Undergrowth species composition and diversity of Pinus massoniana and Schima superba mixed stands with different proportions [J]. Journal of Northwest Forestry College, 2016, 31(6): 34 − 40.
[24] 殷沙, 赵芳, 欧阳勋志. 马尾松木荷不同比例混交林枯落物和土壤持水性能比较分析[J]. 江西农业大学学报, 2015, 37(3): 454 − 460.

YIN Sha, ZHAO Fang, OUYANG Xunzhi. A comparison on water-holding capacity of forest litter and soil of mixed forests of Pinus massoniana and Schima superba in different proportions [J]. Journal of Jiangxi Agricultural University, 2015, 37(3): 454 − 460.
[25] 刘晓彤, 黄金金, 张逸如, 等. 基于广义可加模型的广东省森林土壤有机质影响因子[J]. 生态学杂志, 2022, 41(11): 2278 − 2288.

LIU Xiaotong, HUANG Jinjin, ZHANG Yiru, et al. Analysis of influencing factors on forest soil organic matter in Guangdong Province based on GAM model [J]. Chinese Journal of Ecology, 2022, 41(11): 2278 − 2288.
[26] 杜一尘, 李明泽, 范文义, 等. 基于地理加权回归模型与林火遥感数据估算森林年龄[J]. 林业科学, 2019, 55(6): 184 − 194.

DU Yichen, LI Mingze, FAN Wenyi, et al. Estimation of forest age based on geographically weighted regression model and forest fire remote sensing data [J]. Scientia Silvae Sinicae, 2019, 55(6): 184 − 194.
[27] 李运龙, 熊立华, 闫磊. 基于地理加权回归克里金的降水数据融合及其在水文预报中的应用[J]. 长江流域资源与环境, 2017, 26(9): 1359 − 1368.

LI Yunlong, XIONG Lihua, YAN Lei. A geographically weighted regression kriging approach for Trmm-rain gauge data merging and its application in hydrological forecasting [J]. Resources and Environment in the Yangtze Basin, 2017, 26(9): 1359 − 1368.
[28] 刘畅. 黑龙江省森林碳储量空间分布研究[D]. 哈尔滨: 东北林业大学, 2014.

LIU Chang. Spatial Distribution of Forest Carbon Storage in Heilongjiang Province [D]. Harbin: Northeast Forestry University, 2014.
[29] 李哈滨, 王政权, 王庆成. 空间异质性定量研究理论与方法[J]. 应用生态学报, 1998, 9(6): 651 − 657.

LI Habin, WANG Zhengquan, WANG Qingcheng. Theory and method ology of spatial heterogeneity quantification [J]. Chinese Journal of Applied Ecology, 1998, 9(6): 651 − 657.
[30] 戚玉娇. 大兴安岭森林地上碳储量遥感估算与分析[D]. 哈尔滨: 东北林业大学, 2014.

QI Yujiao. Estimation and Analysis of Forest above-ground Carbon Storage by Remote Sensing in Greater Hinggan Mountains[D]. Harbin: Northeast Forestry University, 2014.
[31]

ZHANG Lianjun, GOVE J H. Spatial assessment of model errors from four regression techniques [J]. Forest Science, 2005, 51(4): 334 − 346.
[32] 陈浩, 罗扬. 马尾松树高-胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439 − 448.

CHEN Hao, LUO Yang. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana [J]. Journal of Forestry and Environment, 2021, 41(4): 439 − 448.
[33] 孙钰森, 王维芳, 李国春. 基于地理加权回归克里格模型的帽儿山地区森林碳储量空间分布[J]. 应用生态学报, 2019, 30(5): 1642 − 1650.

SUN Yusen, WANG Weifang, LI Guochun. Spatial distribution of forest carbon storage in Maoershan region, Northeast China based on geographically weighted regression kriging model [J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1642 − 1650.
[34]

MATEU J, USO J L, MONTES F. The spatial pattern of a forest ecosystem [J]. Ecological Modelling, 1998, 108(1/3): 163 − 174.
[35]

QI Y J, ZHANG Y C, WANG K, et al. Application of spatial regression models for forest biomass estimation in Guizhou Province, Southwest China [J]. Applied Ecology and Environmental Research, 2020, 18(5): 7215 − 7232.
[36]

FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically Weighted Regression: the Analysis of Spatially Varying Relationships[M]. New York: John Wiley & Sons, 2003.
[37] 张凌宇, 刘兆刚. 基于地理加权回归模型的大兴安岭中部天然次生林更新分布[J]. 林业科学, 2019, 55(11): 105 − 116.

ZHANG Lingyu, LIU Zhaogang. Regeneration and distribution of natural secondary forests in the central part of Daxing’an Mountains based on geographically weighted regression model [J]. Scientia Forestry Sinica, 2019, 55(11): 105 − 116.
[38] 陈科屹, 张会儒, 张博, 等. 基于地理加权回归的天然次生林进界木空间分布模拟[J]. 北京林业大学学报, 2021, 43(2): 1 − 9.

CHEN Keyi, ZHANG Huiru, ZHANG Bo, et al. Spatial distribution simulation of recruitment trees of natural secondary forest based on geographically weighted regression [J]. Journal of Beijing Forestry University, 2021, 43(2): 1 − 9.