[1] |
杨俊. 基于ETM+遥感影像的森林覆盖面积提取方法的研究[D]. 南京: 南京农业大学, 2006.
YANG Jun. Study of Extracting the Forest Area Based on the ETM+ Remote Sensing Image [D]. Nanjing: Nanjing Agricultural University, 2006. |
[2] |
BARET F, GUYOT G, MAJOR D. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation [C]// International Geoscience and Remote Sensing Symposium. 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium. Vancouver: Institute of Electrical and Electronics Engineers, 1989: 1355 − 1358. |
[3] |
GEERKEN R, ZAITCHIK B, EVANS J P. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity [J]. International Journal of Remote Sensing, 2005, 26(24): 5535 − 5554. |
[4] |
WARDLOW B D, EGBERT S L, KASTENS J H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U. S. Central Great Plains [J]. Remote Sensing of Environment, 2007, 108(3): 290 − 310. |
[5] |
MASELLI F, CHIESI M. Integration of multisource NDVI data for the estimation of Mediterranean forest productivity [J]. International Journal of Remote Sensing, 2006, 27(1): 55 − 72. |
[6] |
PARUELO J M, EPSTEIN H E, LAUENROTH W K, et al. ANPP estimates from NDVI for the central grassland region of the United States [J]. Ecology, 1997, 78(3): 953 − 958. |
[7] |
ULLAH S, SI Yali, SCHLERF M, et al. Estimation of grassland biomass and nitrogen using MERIS data [J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 196 − 204. |
[8] |
李晓松, 李增元, 高志海, 等. 基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J]. 中国沙漠, 2011, 31(1): 162 − 167.
LI Xiaosong, LI Zengyuan, GAO Zhihai, et al. Estimation of vegetation cover in desertified regions from Hyperion imageries using NDVI and partial least squares regression [J]. Journal of Desert Research, 2011, 31(1): 162 − 167. |
[9] |
刘广峰, 吴波, 范文义, 等. 基于像元二分模型的沙漠化地区植被覆盖度提取——以毛乌素沙地为例[J]. 水土保持研究, 2007, 14(2): 268 − 271.
LIU Guangfeng, WU Bo, FAN Wenyi, et al. Extraction of vegetation coverage in desertification regions based on the dimidiate pixel model: a case study in Maowusu Sandland [J]. Research of Soil and Water Conservation, 2007, 14(2): 268 − 271. |
[10] |
HILKER T, WULDER M A, COOPS N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model [J]. Remote Sensing of Environment, 2009, 113(9): 1988 − 1999. |
[11] |
CONGALTON R, ODERWALD R G, MEAD R. Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques [J]. Photogrammetric Engineering and Remote Sensing, 1983, 49(12): 1671 − 1678. |
[12] |
YUAN Fei, SAWAYA K E, LOEFFELHOLZ B C, et al. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing [J]. Remote Sensing of Environment, 2005, 98(2): 317 − 328. |
[13] |
DUBE T, MUTANGA O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment South Africa [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 36 − 46. |
[14] |
SCHMIDT T, FORSTERET M, GÄRTNER P, et al. Prediction of NDVI for grassland habitats by fusing RapidEye and Landsat imagery [C]// Geoscience and Remote Sensing Society. 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp). Annecy: Institute of Electrical and Electronics Engineers, 2015: 1 − 4. |
[15] |
EMELYANOVA I V, MCVICAR T R, van NIEL T G, et al. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection [J]. Remote Sensing of Environment, 2013, 133(suppl C): 193 − 209. |
[16] |
REEVES M C, ZHAO Maosheng, RUNNING S W. Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics [J]. Rangeland Ecology &Management, 2006, 59(1): 1 − 10. |
[17] |
GAO Tian, XU Bin, YANG Xiuchun, et al. Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia’s grassland between 2001 and 2011 [J]. International Journal of Remote Sensing, 2013, 34(21): 7796 − 7810. |
[18] |
GU Yingxin, WYLIE B K, BLISS N B. Mapping grassland productivity with 250 m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA [J]. Ecological Indicators, 2013, 24(1): 31 − 36. |
[19] |
LI Fei, JIANG Lei, WANG Xufeng, et al. Estimating grassland aboveground biomass using multitemporal MODIS data in the West Songnen Plain, China [J/OL]. Journal of Applied Remote Sensing, 2013, 7(1): 073546[2022-06-01]. doi: 10.1117/1.JRS.7.073546. |
[20] |
JIN Yuanxiang, YANG Xiuchun, QIU Jianjun, et al. Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, northern China [J]. Remote Sensing, 2014, 6(2): 1496 − 1513. |
[21] |
BOYTE S P, WYLIE B K, RIGGE M B, et al. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA [J]. GIScience &Remote Sensing, 2017, 55(3): 376 − 399. |
[22] |
GAO Feng, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207 − 2218. |
[23] |
石月婵, 杨贵军, 李鑫川, 等. 融合多源遥感数据生成高时空分辨率数据的方法对比[J]. 红外与毫米波学报, 2015, 34(1): 92 − 99.
SHI Yuechan, YANG Guijun, LI Xinchuan, et al. Intercomparison of the different fusion methods for generating high spatial-temporal resolution data [J]. Journal of Infrared and Millimeter Waves, 2015, 34(1): 92 − 99. |
[24] |
HOBYB A, RADGUI A, TAMTAOUI A, et al. Evaluation of spatiotemporal fusion methods for high resolution daily NDVI prediction [C]//GERAID S. 2016 5th International Conference on Multimedia Computing and Systems. Marrakech: Institute of Electrical and Electronics Engineers, 2016: 121 − 126. |
[25] |
ZHOU Junxiong, CHEN Jin, CHEN Xuehong, et al. Sensitivity of six typical spatiotemporal fusion methods to different influential factors: a comparative study for a normalized difference vegetation index time series reconstruction [J]. Remote Sensing of Environment, 2021, 252: 112 − 130. |
[26] |
WANG Qunming, ATKINSON P M. Spatio-temporal fusion for daily Sentinel-2 images [J]. Remote Sensing of Environment, 2018, 204: 31 − 42. |
[27] |
JIANG Chong, ZHANG Linbo. Climate change and its impact on the eco-environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China [J]. International Journal of Environmental Research and Public Health, 2015, 12(10): 12057 − 12081. |
[28] |
ZENG Na, REN Xiaoli, HE Hongli, et al. Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging [J/OL]. Environmental Research Letters, 2021, 16: 114020[2022-06-01]. doi: 10.1088/1748-9326/ac2e85. |
[29] |
曾纳, 任小丽, 何洪林, 等. 基于神经网络的三江源区草地地上生物量估算[J]. 环境科学研究, 2017, 30(1): 59 − 66.
ZENG Na, REN Xiaoli, HE Honglin, et al. Aboveground biomass of grasslands in the Three-River Headwaters Region based on neural network [J]. Environmental Research Letters, 2017, 30(1): 59 − 66. |
[30] |
易湘生, 尹衍雨, 李国盛, 等. 青海三江源地区近50年来的气温变化[J]. 地理学报, 2011, 66(11): 1451 − 1465.
YI Xiangsheng, YIN Yanyu, LI Guosheng, et al. Temperature variation in recent 50 years in the Three-River Headwaters Region of Qinghai Province [J]. Acta Geographica Sinica, 2011, 66(11): 1451 − 1465. |
[31] |
刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征[J]. 地理学报, 2008, 18(4): 364 − 376.
LIU Jiyuan, XU Xinliang, SHAO Quanqin. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province [J]. Acta Geographica Sinica, 2008, 18(4): 364 − 376. |
[32] |
吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化[J]. 第四纪研究, 2014, 34(4): 723 − 731.
WU Bingfang, YUAN Quanzhi, YAN Changzhen, et al. Land cover changes of China from 2000 to 2010 [J]. Quaternary Sciences, 2014, 34(4): 723 − 731. |
[33] |
ZHU Xiaolin, CHEN Jin, GAO Feng, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions [J]. Remote Sensing of Environment, 2010, 114(11): 2610 − 2623. |
[34] |
GU Yingxin, WYLIE B K. Downscaling 250 m MODIS growing season NDVI based on multiple-date Landsat images and data mining approaches [J]. Remote Sensing, 2015, 7(4): 3489 − 3506. |
[35] |
LIU Maolin, KE Yinghai, YIN Qi, et al. Comparison of five spatio-temporal satellite image fusion models over landscapes with various spatial heterogeneity and temporal variation [J/OL]. Remote Sensing, 2019, 11(22): 2612[2022-06-01]. doi: 10.3390/rs11222612. |
[36] |
张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306 − 315.
ZHANG Xiaoli, LI Xiongfei, LI Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion [J]. Acta Automatica Sinica, 2014, 40(2): 306 − 315. |
[37] |
ZHANG Binghua, ZHANG Li, XIE Dong, et al. Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation [J/OL]. Remote Sensing, 2016, 8(1): 10[2022-06-01]. doi: 10.3390/rs8010010. |
[38] |
LI Aihua, BO Yanchen, ZHU Yuxin, et al. Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method [J]. Remote Sensing of Environment, 2013, 135: 52 − 63. |