| [1] | 崔悦, 闫冰, 李治学, 等. 坝上地区典型防护林水源涵养功能对林分结构的响应[J]. 北京林业大学学报, 2024, 46(9): 77−86. CUI Yue, YAN Bing, LI Zhixue, et al. Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure[J]. Journal of Beijing Forestry University, 2024, 46(9): 77−86. |
| [2] | 朱柱, 杨海龙, 黄乾, 等. 青海高寒黄土区典型水源涵养林健康评价[J]. 浙江农林大学学报, 2019, 36(6): 1166−1173. ZHU Zhu, YANG Hailong, HUANG Qian, et al. Health evaluation of typical water conservation forests in the alpine loess area of Qinghai[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1166−1173. |
| [3] | 郑江坤, 魏天兴, 朱金兆, 等. 黄土丘陵区自然恢复与人工修复流域生态效益对比分析[J]. 自然资源学报, 2010, 25(6): 990−1000. ZHENG Jiangkun, WEI Tianxing, ZHU Jinzhao, et al. Contrast analysis of ecological benefit between artificial restoration areas and natural restoration areas in Loess Hilly Region[J]. Journal of Natural Resources, 2010, 25(6): 990−1000. |
| [4] | 朱金兆, 魏天兴, 张学培. 基于水分平衡的黄土区小流域防护林体系高效空间配置[J]. 北京林业大学学报, 2002, 24(5/6): 5−13. ZHU Jinzhao, WEI Tianxing, ZHANG Xuepei. Arrangement of protective forest system in gulled-hilly loess area based on water balance[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 5−13. |
| [5] | 于峰, 史正涛, 李滨勇, 等. SWAT模型及其应用研究[J]. 水科学与工程技术, 2008(5): 4−9. YU Feng, SHI Zhengtao, LI Binyong, et al. Discussion on SWAT model and its application[J]. Water Sciences and Engineering Technology, 2008(5): 4−9. |
| [6] | CAI Yunfei, ZHANG Fei, SHI Jingchao, et al. Enhancing SWAT model with modified method to improve eco-hydrological simulation in arid region[J/OL]. Journal of Cleaner Production, 2023, 403: 136891[2024-09-22]. DOI: 10.1016/j.jclepro.2023.136891. |
| [7] | ARNOLD J G, MORIASI D N, GASSMAN P W, et al. SWAT: model use, calibration, and validation[J]. Transactions of the ASABE, 2012, 55(4): 1491−1508. |
| [8] | PARAJULI P B, NELSON N O, FREES L D, et al. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas[J]. Hydrological Processes, 2009, 23(5): 748−763. |
| [9] | 周群. 分布式水文模型SWAT在黄河源区径流模拟中的应用研究[D]. 兰州: 兰州理工大学, 2019. ZHOU Qun. Study on Applicability of Distributed Hydrological Model SWAT on Runoff Simulation in the Source Region of the Yellow River[D]. Lanzhou: Lanzhou University of Technology, 2019. |
| [10] | 汪月月, 吕继军, 马金珠. 基于SWAT模型的马莲河流域地下水资源评价[J]. 兰州大学学报(自然科学版), 2024, 60(4): 435−441. WANG Yueyue, LÜ Jijun, MA Jinzhu. Evaluation of groundwater resources in the Malian River Basin based on the SWAT model[J]. Journal of Lanzhou University (Natural Sciences), 2024, 60(4): 435−441. |
| [11] | 尹思危, 王跃峰, 周琨鸿, 等. 三峡库区小流域景观格局变化洪枯径流效应及归因分析[J]. 生态学报, 2024, 44(18): 7962−7976. YIN Siwei, WANG Yuefeng, ZHOU Kunhong, et al. Runoff extreme responses to watershed landscape pattern changes and their attribution analysis in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2024, 44(18): 7962−7976. |
| [12] | 蒋凯鑫, 莫淑红, 李平治, 等. 长江上游凯江流域径流侵蚀功率时空分布与输沙关系[J]. 泥沙研究, 2024, 49(4): 21−26. JIANG Kaixin, MO Shuhong, LI Pingzhi, et al. Analysis of the spatiotemporal distribution of runoff erosion power and its relationship with sediment transport in the Kaijiang River Basin of the Upper Yangtze River[J]. Journal of Sediment Research, 2024, 49(4): 21−26. |
| [13] | 王倩华, 张攀, 王伟, 等. 黄河中游典型流域土地利用对径流的调控作用[J]. 水土保持研究, 2024, 31(3): 61−68, 78. WANG Qianhua, ZHANG Pan, WANG Wei, et al. Regulation of land use on runoff in typical watersheds of the middle reaches of the Yellow River[J]. Research of Soil and Water Conservation, 2024, 31(3): 61−68, 78. |
| [14] | LI Zhaoguang, JIAN Shan, GU Rui, et al. Runoff simulation under the effects of the modified soil water assessment tool (SWAT) model in the jiyun river basin[J/OL]. Water, 2023, 15(11): 2110[2024-09-22]. DOI: 10.3390/w15112110. |
| [15] | ROTH V, NIGUSSIE T K, LEMANN T. Model parameter transfer for streamflow and sediment loss prediction with SWAT in a tropical watershed[J/OL]. Environmental Earth Sciences, 2016, 75(19): 1321[2024-09-22]. DOI: 10.1007/s12665-016-6129-9. |
| [16] | AYELE G, TESHALE E, YU Bofu, et al. Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile River basin, BEthiopia[J/OL]. Water, 2017, 9(10): 782[2024-09-22]. DOI: 10.3390/w9100782. |
| [17] | BEHARRY S L, GABRIELS D, LOBO D, et al. Use of the SWAT model for estimating reservoir volume in the Upper Navet watershed in Trinidad[J/OL]. SN Applied Sciences, 2021, 3(2): 163[2024-09-22]. DOI: 10.1007/s42452-021-04201-7. |
| [18] | 杨军军, 高小红, 李其江, 等. 湟水流域SWAT模型构建及参数不确定性分析[J]. 水土保持研究, 2013, 20(1): 82−88, 93. YANG Junjun, GAO Xiaohong, LI Qijiang, et al. SWAT model construction and uncertainty analysis on its parameters for the Huangshui River basin[J]. Research of Soil and Water Conservation, 2013, 20(1): 82−88, 93. |
| [19] | 朱宇颐, 解潍嘉, 黄华国. 基于三维模型ENVI-met对黑河森林和北方森林的潜热及显热通量模拟[J]. 浙江农林大学学报, 2018, 35(3): 440−452. ZHU Yuyi, XIE Weijia, HUANG Huaguo. Modeling sensible flux and latent flux in Heihe and boreal forests based on a 3D ENVI-met model[J]. Journal of Zhejiang A&F University, 2018, 35(3): 440−452. |
| [20] | 杨祎. SWAT模型径流模拟的不确定性研究——以东苕溪上游小流域为例[D]. 杭州: 浙江大学, 2014. YANG Yi. The Uncertainty in Runoff Simulation Modeled by SWAT: A Case Study in the Upstream Catchment of Tiao River Watershed[D]. Hangzhou: Zhejiang University, 2014. |
| [21] | 韩芦. 大理河流域水沙变化特征的模拟研究[D]. 西安: 西安理工大学, 2019. HAN Lu. Simulation Study on the Characteristics of Water and Sediment Change in Dali River Basin[D]. Xi’an: Xi’an University of Technology, 2019. |
| [22] | 朱长青, 邢喜云, 于振海, 等. 基于主成分分析的黄土区小流域立地类型划分[J]. 内蒙古林业调查设计, 2011, 34(1): 49−50, 71. ZHU Changqing, XING Xiyun, YU Zhenhai, et al. Subdivision of small watershed site types in Loess Region based on principal component analysis[J]. Inner Mongolia Forestry Investigation and Design, 2011, 34(1): 49−50, 71. |
| [23] | MATTOO D, AHMAD MIR S, BHAT M S, et al. Modelling the impact of climate variability and LULC changes on the hydrological processes in the upper Jhelum basin catchment, western-Himalayas[J]. Water Resources, 2023, 50(2): 215−230. |
| [24] | ASTITE S W, KERMANI S, DJEDIAT Y. The influence of the land use land cover (LULC) change on hydrological response in urbanized watersheds: case study of Wadi Koriche and Wadi Kniss watersheds, northern Algeria[J/OL]. Arabian Journal of Geosciences, 2023, 16(4): 242[2024-09-22]. DOI: 10.1007/s12517-023-11350-z. |
| [25] | 祖拜代·木依布拉, 师庆东, 普拉提·莫合塔尔, 等. 基于SWAT模型的乌鲁木齐河上游土地利用和气候变化对径流的影响[J]. 生态学报, 2018, 38(14): 5149−5157. Zubaidai Muyibul, SHl Qingdong, Polat Muhtar, et al. Land use and climate change effects on runoff in the upper Urumgi River watershed: a SWAT model based analysis[J]. Acta Ecologica Sinica, 2018, 38(14): 5149−5157. |
| [26] | 杨凝. 大清河上游山区典型小流域水源涵养功能评价及造林设计[D]. 北京: 北京林业大学, 2020. YANG Ning. Evaluation of Water Conservation Function and Afforestation Design of Typical Small Watershed in the Upper Reaches of Daqing River[D]. Beijing: Beijing Forestry University, 2020. |
| [27] | 公博. 冀北山地主要人工林水源涵养能力评价[D]. 北京: 北京林业大学, 2019. GONG Bo. The Water Conservation Capacity of Major Plantations in Northern Mountain Area of Hebei Province[D]. Beijing: Beijing Forestry University, 2019. |
| [28] | 朱丽. 华北土石山区流域防护林空间优化配置[D]. 呼和浩特: 内蒙古农业大学, 2010. ZHU Li. Space Optimization of Protective Forest of the Basin in Rocky MountainAarea of North China[D]. Hohhot: Inner Mongolia Agricultural University, 2010. |
| [29] | 王美琪. 大清河流域上游山丘区典型小流域水源涵养林优化配置研究[D]. 北京: 北京林业大学, 2020. WANG Meiqi. Research on Optimal Allocation of Water Conservation Forests in Typical Small Watersheds in Hilly Regions of Daqing River Basin[D]. Beijing: Beijing Forestry University, 2020. |
| [30] | 公博, 师忱, 何会宾, 等. 冀北山区6种人工林的林地水源涵养能力[J]. 干旱区资源与环境, 2019, 33(3): 165−170. GONG Bo, SHI Chen, HE Huibin, et al. The water conservation capacity of 6 kinds of planted forests in northern mountain area of Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 165−170. |
| [31] | 张佳楠, 张建军, 张海博, 等. 晋西黄土区典型林分水源涵养能力评价[J]. 北京林业大学学报, 2019, 41(8): 105−114. ZHANG Jia’nan, ZHANG Jianjun, ZHANG Haibo, et al. Water conservation capacity of typical forestlands in the Loess Plateau of Western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105−114. |