[1] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327(5968): 1008 − 1010. |
[2] |
王小兵, 骆永明, 李振高, 等. 长期定位施肥对亚热带丘陵地区红壤旱地质量的影响Ⅰ. 酸度[J]. 土壤学报, 2011, 48(1): 98 − 102.
WANG Xiaobing, LUO Yongming, LI Zhengao, et al. Effect of long-term stationary fertilization on upland red soil quality in subtropical hilly regions Ⅰ. acidity [J]. Acta Pedologica Sinica, 2011, 48(1): 98 − 102. |
[3] |
MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics [J]. Soil Biology and Biochemistry, 2016, 93: 1 − 7. |
[4] |
CUI Yongxing, BING Haijian, FANG Linchuan, et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems [J]. Plant and Soil, 2021, 458(1/2): 7 − 20. |
[5] |
SINSABAUGH R L, FOLLSTAD SHAH J J, HILL B H, et al. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils [J]. Biogeochemistry, 2012, 111(1/3): 455 − 467. |
[6] |
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462(7274): 795 − 798. |
[7] |
许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7): 2445 − 2454.
XU Miaoping, REN Chengjie, ZHANG Wei, et al. Responses mechanism of C∶N∶P stoichiometry of soil microbial biomass and soil enzymes to climate change [J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2445 − 2454. |
[8] |
顾建强, 马闪闪, 李立增, 等. 八种肥料对小番薯生长性状及产量的影响[J]. 南方农业, 2020, 14(31): 15 − 18.
GU Jianqiang, MA Shanshan, LI Lizeng, et al. Effects of eight kinds of fertilizers on growth traits and yield of sweet potato [J]. South China Agriculture, 2020, 14(31): 15 − 18. |
[9] |
龚玲婷, 石林, 蔡如梦. 矿物质调理剂对土壤养分含量及植物营养吸收的影响[J]. 土壤, 2019, 51(5): 916 − 922.
GONG Lingting, SHI Lin, CAI Rumeng. Effects of mineral conditioner on soil nutrient contents and nutrient absorption by lettuce [J]. Soils, 2019, 51(5): 916 − 922. |
[10] |
SHI Renyong, LI Jiuyu, XU Renkou, et al. Ameliorating effects of individual and combined application of biomass ash, bone meal and alkaline slag on acid soils [J]. Soil and Tillage Research, 2016, 162: 41 − 45. |
[11] |
蒙园园, 石林. 矿物质调理剂中铝的稳定性及其对酸性土壤的改良作用[J]. 土壤, 2017, 49(2): 345 − 349.
MENG Yuanyuan, SHI Lin. Stability of aluminum in mineral conditioners and amelioration on acid soil [J]. Soils, 2017, 49(2): 345 − 349. |
[12] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU Rukun. Methods of Soil Agricultural Chemical Analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000. |
[13] |
WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction : an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22(8): 1167 − 1169. |
[14] |
MARTIN J K, CORRELL R L. Measurement of microbial biomass phosphorus in rhizosphere soil [J]. Plant and Soil, 1989, 113(2): 213 − 221. |
[15] |
SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology and Biochemistry, 2002, 34(6): 1309 − 1315. |
[16] |
de VARGAS J P R, dos SANTOS D R, BASTOS M C, et al. Application forms and types of soil acidity corrective: changes in depth chemical attributes in long term period experiment [J]. Soil and Tillage Research, 2019, 185: 47 − 60. |
[17] |
李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究[J]. 中国土壤与肥料, 2014(4): 7 − 11.
LI Ang, WANG Xu, FAN Hongli. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil [J]. Soil and Fertilizer Sciences in China, 2014(4): 7 − 11. |
[18] |
LEHMANN J, da SILVA J P Jr, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343 − 357. |
[19] |
LIU Jie, SCHULZ H, BRANDL S, et al. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions [J]. Journal of Plant Nutrition and Soil Science, 2012, 175(5): 698 − 707. |
[20] |
CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere [J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10316 − 10321. |
[21] |
包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 43 − 50.
BAO Junyao, ZHAO Yingzhi, YAN Shuxian, et al. Soil amelioration with biochars pyrolzyed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation [J]. Journal of Zhejiang A&F University, 2018, 35(1): 43 − 50. |
[22] |
李致博. 土壤酸化对养分淋失、微生物多样性及柑橘生长的影响[D]. 福州: 福建农林大学, 2020.
LI Zhibo. Effects of Soil Acidification on Nutrient Leaching, Microbial Diversity and Citrus Growth [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. |
[23] |
STEVENS C J, DISE N B, MOUNTFORD J W, et al. Impact of nitrogen deposition on the species richness of grasslands [J]. Science, 2004, 303(5665): 1876 − 1879. |
[24] |
SUDING K N, COLLINS S L, GOUGH L, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization [J]. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387 − 4392. |
[25] |
CZIMCZIK C I, MASIELLO C A. Controls on black carbon storage in soils [J/OL]. Global Biogeochemical Cycles, 2007, 21(3): GB3005[2022-07-02]. doi: 10.1029/2006GB002798. |
[26] |
喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素[J]. 草地学报, 2020, 28(6): 1702 − 1710.
YU Lanhui, WANG Jie, LIAO Lirong, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2020, 28(6): 1702 − 1710. |
[27] |
刘玉荣, 贾双勤, 强生军, 等. 钾肥在旱地马铃薯栽培技术中的应用研究[J]. 中国农机化学报, 2022, 43(2): 121 − 126.
LIU Yurong, JIA Shuangqin, QIANG Shengjun, et al. Application of potassic fertilizer in potato cultivation in dryland [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 121 − 126. |
[28] |
SPEIR T W, COWLING J C. Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices [J]. Biology and Fertility of Soils, 1991, 12(3): 189 − 194. |
[29] |
ZHANG Wei, XU Yadong, GAO Dexin, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biology and Biochemistry, 2019, 134: 1 − 14. |
[30] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale [J]. Ecology Letters, 2008, 11(11): 1252 − 1264. |
[31] |
REED S C, VITOUSEK P M, CLEVELAND C C. Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence [J]. Biogeochemistry, 2011, 106(3): 323 − 336. |
[32] |
曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制[J]. 应用生态学报, 2021, 32(2): 521 − 528.
ZENG Quanxin, ZHANG Qiufang, LIN Kaimiao, et al. Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 521 − 528. |