| [1] | 张树林, 戴思兰. 中国菊花全书[M]. 北京: 中国林业出版社, 2013. ZHANG Shulin, DAI Silan. Chinese Chrysanthemum Book[M]. Beijing: China Forestry Publishing House, 2013. |
| [2] | YUAN Hanwen, JIANG Sai, LIU Yingkai, et al. The flower head of Chrysanthemum morifolium Ramat. (Juhua): a paradigm of flowers serving as Chinese dietary herbal medicine[J/OL]. Journal of Ethnopharmacology, 2020, 261: 113043[2024-10-05]. DOI: 10.1016/j.jep.2020.113043. |
| [3] | WU Jiayi, LIU Jingjing, JIANG Li, et al. Diversity and dose-dependent allelopathic potential of volatile sesquiterpenes from root extracts of Chrysanthemum morifolium cultivars[J/OL]. Scientia Horticulturae, 2024, 327: 112830[2024-10-05]. DOI: 10.1016/j.scienta.2023.112830. |
| [4] | SCHMITT M, ALI AHMADI S, XU Yonghao, et al. There are No data like more data: datasets for deep learning in earth observation [J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(3): 63−97. |
| [5] | CUI Luming, ZHANG Qian, ZHANG Yifan, et al. Anxiolytic effects of Chrysanthemum morifolium Ramat. Carbonisata-based carbon dots in mCPP-induced anxiety-like behavior in mice: a nature-inspired approach[J/OL]. Frontiers in Molecular Biosciences, 2023, 10: 1222415[2024-10-05]. DOI: 10.3389/fmolb.2023.1222415. |
| [6] | 金潇潇, 陈发棣, 陈素梅, 等. 20个菊花品种花瓣的营养品质分析[J]. 浙江林学院学报, 2010, 27(1): 22−29. JIN Xiaoxiao, CHEN Fadi, CHEN Sumei, et al. Nutrition in 20 cultivars of Chrysanthemum [J]. Journal of Zhejiang Forestry College, 2010, 27(1): 22−29. |
| [7] | CHU Qingcui, FU Liang, GUAN Yueqing, et al. Determination and differentiation of Flos Chrysanthemum based on characteristic electrochemical profiles by capillary electrophoresis with electrochemical detection [J]. Journal of Agricultural and Food Chemistry, 2004, 52(26): 7828−7833. |
| [8] | CHEN Sha, LIU Jing, DONG Gangqiang, et al. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat. flowers: a potentially rich source of bioactive compounds[J/OL]. Food Chemistry, 2021, 344: 128733[2024-10-05]. DOI: 10.1016/j.foodchem.2020.128733. |
| [9] | SHEN Nan, WANG Tongfei, GAN Quan, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity[J/OL]. Food Chemistry, 2022, 383: 132531[2024-10-05]. DOI: 10.1016/j.foodchem.2022.132531. |
| [10] | PANDEY J, BASTOLA T, DHAKAL B, et al. Chrysanthemum morifolium Ramat.: a medicinal plant with diverse traditional uses, bioactive constituents, and pharmacological activities [M]// DEVKOTA H P, AFTAB T. Medicinal Plants of the Asteraceae Family, Singapore: Springer, 2022: 125−143. |
| [11] | JANG H Y, LEE H S, NOH E M, et al. Aqueous extract of Chrysanthemum morifolium Ramat. inhibits RANKL-induced osteoclast differentiation by suppressing the c-fos/NFATc1 pathway[J/OL]. Archives of Oral Biology, 2021, 122: 105029[2024-10-05]. DOI: 10.1016/j.archoralbio.2020.105029. |
| [12] | SUH M G, CHOI H S, CHO K, et al. Anti-inflammatory action of herbal medicine comprised of Scutellaria baicalensis and Chrysanthemum morifolium [J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(9): 1799−1809. |
| [13] | TIAN Xing, WANG Haodong, CHEN Liang, et al. Distinct changes in metabolic profile and sensory quality with different varieties of Chrysanthemum (Juhua) tea measured by LC-MS-based untargeted metabolomics and electronic tongue[J/OL]. Foods, 2024, 13(7): 1080[2024-10-05]. DOI: 10.3390/foods13071080. |
| [14] | LI Yanfang, YANG Puyu, LUO Yinghua, et al. Chemical compositions of Chrysanthemum teas and their anti-inflammatory and antioxidant properties [J]. Food Chemistry, 2019, 286: 8−16. |
| [15] | URANISHI R, AEDLA R, ALSAADI D H M, et al. Evaluation of environmental factor effects on the polyphenol and flavonoid content in the leaves of Chrysanthemum indicum L. and its habitat suitability prediction mapping[J/OL]. Molecules, 2024, 29(5): 927[2024-10-05]. DOI: 10.3390/molecules29050927. |
| [16] | ZHAN Jianfeng, HE Feng, CAI Huimin, et al. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju[J/OL]. Journal of Functional Foods, 2021, 87: 104746[2024-10-05]. DOI: 10.1016/j.jff.2021.104746. |
| [17] | JIANG Zhongrong, ZHANG Ting, JI Lingbo, et al. Chemical composition and bioactivities of the essential oil of Coreopsis tinctoria and Chrysanthemum morifolium [J]. International Journal of Food Properties, 2023, 26(1): 1036−1046. |
| [18] | WANG Yuxiao, XU Zhenzhen, HUANG Yuqi, et al. Extraction, purification, and hydrolysis behavior of apigenin-7-O-glucoside from Chrysanthemum morifolium tea[J/OL]. Molecules, 2018, 23(11): 2933[2024-10-05]. DOI: 10.3390/molecules23112933. |
| [19] | ZHOU Huiji, ZHANG Xue, LI Bo, et al. Fast and efficient identification of hyaluronidase specific inhibitors from Chrysanthemum morifolium Ramat. using UF-LC-MS technique and their anti-inflammation effect in macrophages[J/OL]. Heliyon, 2023, 9(2): e13709[2024-10-05]. DOI: 10.1016/j.heliyon.2023.e13709. |
| [20] | LEE M S, KIM Y. Chrysanthemum morifolium flower extract inhibits adipogenesis of 3T3-L1 cells via AMPK/SIRT1 pathway activation[J/OL]. Nutrients, 2020, 12(9): 2726[2024-10-05]. DOI: 10.3390/nu12092726. |
| [21] | NG T L, LOH K E, TAN S A, et al. Anti-hyperuricemic effect of ethyl acetate sub-fractions from Chrysanthemum morifolium Ramat. dried flowers on potassium oxonate-induced hyperuricemic rats[J/OL]. Applied Sciences, 2022, 12(7): 3487[2024-10-05]. DOI: 10.3390/app12073487. |
| [22] | QU Lu, RUAN Jingya, JIN Lijun, et al. Xanthine oxidase inhibitory effects of the constituents of Chrysanthemum morifolium stems [J]. Phytochemistry Letters, 2017, 19: 39−45. |
| [23] | YUAN Jun, HUANG Jun, WU Gang, et al. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. [J]. Industrial Crops and Products, 2015, 74: 192−199. |
| [24] | LOH K E, CHIN Y S, SAFINAR ISMAIL I, et al. Rapid characterisation of xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat. Using metabolomics approach [J]. Phytochemical Analysis, 2022, 33(1): 12−22. |
| [25] | GAO Die, YANG Fengqing, XIA Zhining, et al. Molecularly imprinted polymer for the selective extraction of luteolin from Chrysanthemum morifolium Ramat. [J]. Journal of Separation Science, 2016, 39(15): 3002−3010. |
| [26] | ZHANG Nan, HE Zhengjun, HE Siyu, et al. Insights into the importance of dietary Chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties [J]. Food Research International, 2019, 116: 810−818. |
| [27] | ONO M, SUNAGAWA Y, MOCHIZUKI S, et al. Chrysanthemum morifolium extract ameliorates doxorubicin-induced cardiotoxicity by decreasing apoptosis[J/OL]. Cancers, 2022, 14(3): 683[2024-10-05]. DOI: 10.3390/cancers14030683. |
| [28] | YANG Feng, WANG Tao, GUO Qiaosheng, et al. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana [J]. Plant Cell Reports, 2023, 42(4): 791−803. |
| [29] | LIANG Fengjie, HU Changfeng, HE Zhengchun, et al. An Arabinogalactan from flowers of Chrysanthemum morifolium: structural and bioactivity studies [J]. Carbohydrate Research, 2014, 387: 37−41. |
| [30] | TAO Jinhua, DUAN Jinao, JIANG Shu, et al. Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat. by gas chromatography with flame ionization detector [J]. Journal of Chromatography B, 2016, 1029: 88−94. |
| [31] | LI Liping, GU Liqiang, CHEN Zhongjian, et al. Toxicity study of ethanolic extract of Chrysanthemum morifolium in rats [J]. Journal of Food Science, 2010, 75(6): T105−T109. |
| [32] | CHEN Liangmian, KOTANI A, KUSU F, et al. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection [J]. Chemical & Pharmaceutical Bulletin, 63: 25−32. |
| [33] | HODAEI M, RAHIMMALEK M, ARZANI A. Variation in bioactive compounds, antioxidant and antibacterial activity of Iranian Chrysanthemum morifolium cultivars and determination of major polyphenolic compounds based on HPLC analysis [J]. Journal of Food Science and Technology, 2021, 58(4): 1538−1548. |
| [34] | YOUSSEF F S, EID S Y, ALSHAMMARI E, et al. Chrysanthemum indicum and Chrysanthemum morifolium: chemical composition of their essential oils and their potential use as natural preservatives with antimicrobial and antioxidant activities[J/OL]. Foods, 2020, 9(10): 1460[2024-10-05]. DOI: 10.3390/foods9101460. |
| [35] | CHO B O, SHIN J Y, KANG H J, et al. Anti-inflammatory effect of Chrysanthemum zawadskii, peppermint, Glycyrrhiza glabra herbal mixture in lipopolysaccharide-stimulated RAW264.7 macrophages[J/OL]. Molecular Medicine Reports, 2021, 24(1): 532[2024-10-05]. DOI: 10.3892/mmr.2021.12171. |
| [36] | GUVEN H, ARICI A, SIMSEK O. Flavonoids in our foods: a short review[J/OL]. Journal of Basic and Clinical Health Sciences, 2019, 3(1): 555[2024-10-05]. DOI: 10.30621/jbachs.2019.555. |
| [37] | SAYYARI Z, FARAHMANDFAR R. Stabilization of sunflower oil with pussy willow (Salix aegyptiaca) extract and essential oil [J]. Food Science & Nutrition, 2017, 5(2): 266−272. |
| [38] | EMBUSCADO M E. Spices and herbs: natural sources of antioxidants: a mini review [J]. Journal of Functional Foods, 2015, 18: 811−819. |
| [39] | WANG Dongying, MENG Yudong, WANG Chenxin, et al. Antioxidant activity and sensory improvement of Angelica dahurica cv. Yubaizhi essential oil on sunflower oil during high-temperature storage[J/OL]. Processes, 2020, 8(4): 403[2024-10-05]. DOI: 10.3390/pr8040403. |
| [40] | ZHANG Xiaoxi, YU Xinfen, SHI Yueyue, et al. Chrysanthemum morifolium cv. Hang-ju leaves: an abundant source of preservatives for food industry[J]. European Food Research and Technology, 2020, 246(5): 939−946. |
| [41] | MENG Yudong, YANG Haoduo, WANG Dongying, et al. Improvement for oxidative stability and sensory properties of sunflower oil flavored by Huai Chrysanthemum × morifolium Ramat. essential oil during accelerated storage[J/OL]. Processes, 2021, 9(7): 1199[2024-10-05]. DOI: 10.3390/pr9071199. |
| [42] | CHEN Y H, YAN S L, WU J Y, et al. Analyses of the compositions, antioxidant capacities, and tyrosinase-inhibitory activities of extracts from two new varieties of Chrysanthemum morifolium Ramat. using four solvents[J/OL]. Applied Sciences, 2021, 11(16): 7631[2024-10-05]. DOI: 10.3390/app11167631. |
| [43] | DENG Yinai, YANG Peng, ZHANG Qianle, et al. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum[J/OL]. Cell Reports, 2024, 43(2): 113725[2024-10-05]. DOI: 10.1016/j.celrep.2024.113725. |
| [44] | DENG Yuxing, LU Shanfa. Biosynthesis and regulation of phenylpropanoids in plants [J]. Critical Reviews in Plant Sciences, 2017, 36(4): 257−290. |
| [45] | RIGHINI S, RODRIGUEZ E J, BEROSICH C, et al. Apigenin produced by maize flavone synthase Ⅰ and Ⅱ protects plants against UV-B-induced damage [J]. Plant, Cell & Environment, 2019, 42(2): 495−508. |
| [46] | HU Ting, GAO Zhiqiang, HOU Jiaming, et al. Identification of biosynthetic pathways involved in flavonoid production in licorice by RNA-seq based transcriptome analysis [J]. Plant Growth Regulation, 2020, 92(1): 15−28. |
| [47] | YANG Yanjun, LIU Jie, YI Taiyao, et al. Integrated mRNA and miRNA omics reveal the regulatory role of UV-B radiation in active ingredient biosynthesis of Chrysanthemum morifolium Ramat. [J/OL]. Industrial Crops and Products, 2023, 197: 116657[2024-10-05]. DOI: 10.1016/j.indcrop.2023.116657. |
| [48] | WANG Tao, YANG Feng, GUO Qiaosheng, et al. Long-read sequencing of Chrysanthemum morifolium transcriptome reveals flavonoid biosynthesis and regulation [J]. Plant Growth Regulation, 2020, 92(3): 559−569. |
| [49] | WANG Lanlan, LIU Xiaomeng, MENG Xiangxiang, et al. Cloning and expression analysis of a chalcone isomerase (CnCHI) gene from Chamaemelum nobile [J]. Biotechnology (Faisalabad), 2017, 17(1): 19−25. |
| [50] | ZHAO Xiting, SONG Lingyu, MA Mengdan, et al. RNA-Seq for excavation of genes involved in the biosynthesis of primary active components and identification of new EST-SSR markers in medicinal chrysanthemum [J]. Archives of Biological Sciences, 2019, 71(3): 489−500. |
| [51] | TANAKA Y, BRUGLIERA F. Flower colour and cytochromes P450[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368(1612): 20120432[2024-10-05]. DOI: 10.1098/rstb.2012.0432. |
| [52] | AYABE S I, AKASHI T. Cytochrome P450s in flavonoid metabolism [J]. Phytochemistry Reviews, 2006, 5(2/3): 271−282. |
| [53] | ZHAO Weiping, ZHAO Jun, HE Lan, et al. Molecular structure and the second introns variation of gene F3'H of two medicinal Chrysanthemum morifolium populations [J]. Biochemical Systematics and Ecology, 2013, 51: 251−258. |
| [54] | LU Chenfei, YAN Xiaoyun, ZHANG Haohao, et al. Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in Chrysanthemum[J/OL]. BMC Genomics, 2024, 25(1): 759[2024-10-05]. DOI: 10.1186/s12864-024-10676-6. |
| [55] | XU Yi, HUANG Dongmei, MA Funing, et al. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis [J]. Journal of Integrative Agriculture, 2023, 22(5): 1412−1423. |
| [56] | SONG Chi, LIU Yifei, SONG Aiping, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits [J]. Molecular Plant, 2018, 11(12): 1482−1491. |
| [57] | ZHANG Wanbo, JIANG Yifan, CHEN Fei, et al. Dynamic regulation of volatile terpenoid production and emission from Chrysanthemum morifolium capitula [J]. Plant Physiology and Biochemistry, 2022, 182: 11−21. |
| [58] | ZHAN Xiaori, CHEN Zhehao, CHEN Rong, et al. Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways[J/OL]. Frontiers in Plant Science, 2022, 13: 877304[2024-10-05]. DOI: 10.3389/fpls.2022.877304. |
| [59] | WANG Xiangyuan, TIAN Lu, FENG Shijing, et al. Identifying potential flavonoid biosynthesis regulator in Zanthoxylum bungeanum Maxim. by genome-wide characterization of the MYB transcription factor gene family [J]. Journal of Integrative Agriculture, 2022, 21(7): 1997−2018. |
| [60] | DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573−581. |
| [61] | WANG Yiguang, ZHOU Lijie, WANG Yuxi, et al. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of Chrysanthemum[J/OL]. Scientia Horticulturae, 2022, 293: 110674[2024-10-05]. DOI: 10.1016/j.scienta.2021.110674. |
| [62] | ZHANG Yunfei, CAO Guangyu, QU Lijia, et al. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15[J/OL]. Journal of Genetics and Genomics, 2009, 36(2): 99−107. |
| [63] | PUNWANI J A, RABIGER D S, LLOYD A, et al. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98 [J]. The Plant Journal, 2008, 55(3): 406−414. |
| [64] | ZHU Lu, GUAN Yunxiao, LIU Yanan, et al. Regulation of flowering time in Chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism[J/OL]. Horticulture Research, 2020, 7: 96[2024-10-05]. DOI: 10.1038/s41438-020-0317-1. |
| [65] | AI Penghui, XUE Jundong, SHI Zhongya, et al. Genome-wide characterization and expression analysis of MYB transcription factors in Chrysanthemum nankingense[J/OL]. BMC Plant Biology, 2023, 23(1): 140[2024-10-05]. DOI: 10.1186/s12870-023-04137-7. |
| [66] | ZHU Lu, GUAN Yunxiao, ZHANG Zhaohe, et al. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in Chrysanthemum [J]. Plant Physiology and Biochemistry, 2020, 149: 217−224. |
| [67] | WANG Yiguang, ZHOU Lijie, WANG Yuxi, et al. CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in Chrysanthemum [J]. Plant Molecular Biology, 2022, 108(1/2): 51−63. |
| [68] | ZHANG Jianhong, LÜ Haizhou, LIU Wanjing, et al. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza [J]. Chinese Herbal Medicines, 2020, 12(3): 237−246. |
| [69] | ZHANG Xin, LUO Hongmei, XU Zhichao, et al. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza[J/OL]. Scientific Reports, 2015, 5: 11244[2024-10-05]. DOI: 10.1038/srep11244. |
| [70] | HU Ran, ZHU Meichen, CHEN Si, et al. BnbHLH92a negatively regulates anthocyanin and proanthocyanidin biosynthesis in Brassica napus [J]. The Crop Journal, 2023, 11(2): 374−385. |
| [71] | XIANG Lili, LIU Xiaofen, LI Xue, et al. A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in chrysanthemums (Chrysanthemum morifolium Ramat. )[J/OL]. PLoS One, 2015, 10(11): e0143892[2024-10-05]. DOI: 10.1371/journal.pone.0143892. |
| [72] | KLAY I, GOUIA S, LIU Mingchun, et al. Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants [J]. Plant Science, 2018, 274: 137−145. |
| [73] | HE Shun, XU Xin, GAO Qian, et al. NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum[J/OL]. Planta, 2023, 259(2): 31[2024-10-05]. DOI: 10.1007/s00425-023-04301-1. |
| [74] | WANG You, ZHANG Wanwan, HONG Chaojun, et al. Chrysanthemum (Chrysanthemum morifolium) CmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni)[J]. BMC Plant Biology, 2024, 24(1): 76[2024-10-05]. DOI: 10.1186/s12870-024-04758-6. |
| [75] | LU Chenfei, LIU Yuchen, YAN Xiaoyun, et al. Multiplex approach of metabolomic and transcriptomic reveals the biosynthetic mechanism of light-induced flavonoids and CGA in Chrysanthemum[J]. Industrial Crops and Products, 2024, 221: 119420[2024-10-05]. DOI: 10.1016/j.indcrop.2024.119420. |
| [76] | DONG Qingkun, HU Binbin, ZHANG Cui. microRNAs and their roles in plant development[J]. Frontiers in Plant Science, 2022, 13: 824240[2024-10-05]. DOI: 10.3389/fpls.2022.824240. |
| [77] | ZHANG Libin, XIA Heng, WU Jiangsheng, et al. MiRNA identification, characterization and integrated network analysis for flavonoid biosynthesis in Brassica coraphanus [J]. Horticultural Plant Journal, 2022, 8(3): 319−327. |
| [78] | SONG Aiping, GAO Tianwei, WU Dan, et al. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors [J]. Plant Physiology and Biochemistry, 2016, 102: 10−16. |
| [79] | SONG Aiping, WU Dan, FAN Qingqing, et al. Transcriptome-wide identification and expression profiling analysis of Chrysanthemum trihelix transcription factors[J/OL]. International Journal of Molecular Sciences, 2016, 17(2): 198[2024-10-05]. DOI: 10.3390/ijms17020198. |
| [80] | SONG Aiping, GAO Tianwei, LI Peiling, et al. Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium[J/OL]. Frontiers in Plant Science, 2016, 7: 199[2024-10-05]. DOI: 10.3389/fpls.2016.00199. |
| [81] | SONG Aiping, LI Peiling, XIN Jingjing, et al. Transcriptome-wide survey and expression profile analysis of putative Chrysanthemum HD-zip Ⅰ and Ⅱ genes[J/OL]. Genes, 2016, 7(5): 19[2024-10-05]. DOI: 10.3390/genes7050019. |