[1] 付玉杰, 田地, 侯正阳, 等. 全球森林碳汇功能评估研究进展[J]. 北京林业大学学报, 2022, 44(10): 1−10.

FU Yujie, TIAN Di, HOU Zhengyang. Review on the evaluation of global forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 1−10.
[2]

CAI Weixiang, HE Nianpeng, LI Mingxu, et al. Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies[J/OL]. Science Bulletin, 2022, 67: 836−843[2024-07-28]. DOI: 10.1016/j.scib.2021.12.012.
[3]

ALTANZAGAS B, LUO Yongkai, ALTANSUKH B, et al. Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia[J/OL]. Forests, 2019, 10(8): 661[2024-07-28]. DOI: 10.3390/f10080661.
[4] 郭玉东, 张秋良, 陈晓燕, 等. 库布齐沙漠地区人工灌木林生物量模型构建[J]. 西北农林科技大学学报(自然科学版), 2022, 50(4): 74−82.

GUO Yudong, ZHANG Qiuliang, CHEN Xiaoyan, et al. Establishment of biomass models for artificial shrubbery in the Kubuqi desert area[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(4): 74−82.
[5] 赵厚本, 周光益, 李兆佳, 等. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23−31.

ZHAO Houben, ZHOU Guangyi, LI Zhaojia, et al. Biomass allocation and allometric growth models of four common tree apecies in southern subtropical evergreen broad-leaved forest[J]. Scientia Silvae Sinicae, 2022, 58(2): 23−31.
[6] 卢立华, 李华, 农友, 等. 南亚热带4种人工林生物量及其分配格局[J]. 中南林业科技大学学报, 2020, 40(8): 91−98.

LU Lihua, LI Hua, NONG You, et al. Biomass and its distribution pattern in four subtropical plantation ecosystems[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8): 91−98.
[7]

KITTERDGE J. Estimation of the amount of foliage of trees and stands[J]. Journal of Forests, 1944, 42(12): 905−912.
[8]

RUARK G A, MARTIN G L, BOCKHEIM J G. Comparison of constant and variable allometric ratios for estimating populus tremuloides biomass[J]. Forest Science, 1987, 33(2): 294−300.
[9] 张静菲. 妙峰山侧柏生物量模型研究[D]. 北京: 北京林业大学, 2012.

ZHANG Jingfei. Study on Biomass Model of P. orientalis in Miaofengshan[D]. Beijing: Beijing Forestry University, 2012.
[10] 李海奎, 宁金魁. 基于树木起源、立地分级和龄组的单木生物量模型[J]. 生态学报, 2012, 32(3): 740−757.

LI Haikui, NING Jinkui. Individual tree biomass model by tree origin, site classes and age groups[J]. Acta Ecologica Sinica, 2012, 32(3): 740−757.
[11] 邱扬, 张金屯, 柴宝峰, 等. 晋西油松人工林地上部分生物量与生产力的研究[J]. 河南科学, 1999, 17(增刊): 79−83, 86.

QIU Yang, ZHANG Jintun, CHAI Baofeng, et al. Study on the aboveground biomass and productivity of Pinus tabulaeformis planted forest west of Shanxi Province[J]. Henan Science, 1999, 17(suppl): 79−83, 86.
[12] 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1−11.

LÜ Ziqing, DUAN Aiguo. Biomass and carbon storage model of Cunninghamia lanceolata in different production areas[J]. Scientia Silvae Sinicae, 2024, 60(2): 1−11.
[13] 蔡会德, 卢峰, 徐占勇, 等. 桉树相容性可加性立木生物量模型系统研建[J]. 林业资源管理, 2023(1): 87−93.

CAI Huide, LU Feng, XU Zhanyong, et al. Research development of compatible and additive individual tree biomass model systems for Eucalyptus[J]. Forest Resources Management, 2023(1): 87−93.
[14]

TANG Souzhent, LI Yong, WANG Yonghe. Simultaneous equations, error-in variable models, and model integration in systems ecology[J]. Ecological Modelling, 2001, 142: 285−294.
[15] 李文博, 谢龙飞, 董利虎. 考虑样地效应的人工杨树立木可加性生物量模型构建[J]. 生态学杂志, 2024, 43(8): 2513−2522.

LI Wenbo, XIE Longfei, DONG Lihu. Construction of additive biomass model of planted poplar trees considering plot effect[J]. Chinese Journal of Ecology, 2024, 43(8): 2513−2522.
[16] 辛士冬, 严云仙, 姜立春. 基于不同可加性方法的黑龙江省红松人工林林分生物量模型[J]. 应用生态学报, 2020, 31(10): 3322−3330.

XIN Shidong, YAN Yunxian, JIANG Lichun. Stand biomass model for Pinus koraiensis plantation based on different additive methods in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3322−3330.
[17]

LI Haikui, ZHAO Pengxiang. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153−163.
[18] 刘秀红, 姜春前, 徐睿, 等. 相容性单木生物量模型估计方法的比较——以青冈栎为例[J]. 林业科学, 2020, 56(9): 164−173.

LIU Xiuhong, JIANG Chunqian, XU Rui, et al. Comparison of methods to construct compatible individual tree biomass models: a case study of Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2020, 56(9): 164−173.
[19] 刘宁, 王彬, 郑淑霞, 等. 油松人工林相容性生长联立方程组模型构建[J]. 西南林业大学学报, 2024, 44(2): 119−126.

LIU Ning, WANG Bin, ZHENG Shuxia, et al. Construction of compatible growth simultaneous equations model for Pinus tabuliformis plantation [J]. Journal of Southwest Forestry University, 2024, 44(2): 119−126.
[20]

KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Canadian Journal of Forest Research, 2003, 33: 976−987.
[21] 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2): 137−143.

ZENG Weisheng, TANG Shouzheng. Biomass correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143.
[22] 冉啟香, 邓华锋, 黄国胜, 等. 云南松地上生物量模型研究[J]. 浙江农林大学学报, 2016, 33(4): 605−611.

RAN Qixiang, DENG Huafeng, HUANG Guosheng, et al. An aboveground biomass model for Pinus yunnanensis[J]. Journal of Zhejiang A&F University, 2016, 33(4): 605−611.
[23] 彭健健, 王增, 张勇, 等. 杨梅人工林相容性单株生物量模型构建[J]. 浙江农林大学学报, 2022, 39(2): 272−279.

PENG Jianjian, WANG Zeng, ZHANG Yong, et al. Construction of compatible individual tree biomass model of Myrica rubra plantation[J]. Journal of Zhejiang A&F University, 2022, 39(2): 272−279.
[24] 马浩, 曹元帅, 吕延杰, 等. 内蒙古大兴安岭林区白桦天然林单木胸径生长模型构建[J]. 北京林业大学学报, 2024, 46(8): 101−110.

MA Hao, CAO Yuanshuai, LÜ Yanjie, et al. Construction of individual tree DBH growth models for natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of Northern China [J]. Journal of Beijing Forestry University, 2024, 46(8): 101−110.
[25] 曾伟生. 全国立木生物量方程建模方法研究[D]. 北京: 中国林业科学研究院, 2011.

ZENG Weisheng. Methodology on Modeling of Single-Tree Biomass Equations for National Biomass Estimation in China[D]. Beijing: Chinses Academy of Forestry, 2011.
[26]

MADGWICK H, SATOO T. On estimating the aboveground weights of tree stands[J]. Ecology, 1975, 56: 1446−1450.
[27] 董灵波, 邵威威, 田栋元, 等. 基于林木分级的大兴安岭天然兴安落叶松树高曲线研究[J]. 北京林业大学学报, 2023, 45(5): 88−96

DONG Lingbo, SHAO Weiwei, TIAN Dongyuan, et al. Height curve of natural Larix gmelinii in the Daxing’ anling Mountains of Northeastern China based on forest classification[J]. Journal of Beijing Forestry University, 2023, 45(5): 88−96.
[28] 胥辉. 两种生物量模型的比较[J]. 西南林学院学报, 2003, 23(2): 36−39.

XÜ Hui. A comparison between CAR and VAR biomass models[J]. Journal of Southwest Forestry University, 2003, 23(2): 36−39.
[29] 姚正阳, 刘建军. 西安市4种城市绿化灌木单株生物量估算模型[J]. 应用生态学报, 2014, 25(1): 111−116.

YAO Zhengyang, LIU Jianjun. Models for biomass estimation of four shrub species planted in urban area of Xi’an City, Northwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 111−116.
[30] 刘志刚, 马钦彦. 华北落叶松人工林生物量估测方法的探讨[J]. 北京林业大学学报, 1992, 14(增刊1): 105−113.

LI Zhigang, MA Qinyan. An approach to methods for estimating biomass of the Larix principis-rupprechtii artificial forests[J]. Journal of Beijing Forestry University, 1992, 14(suppl 1): 105−113.
[31]

ZHOU Xiaolu, YANG Mingxia, LIU Zelin, et al. Dynamic allometric scaling of tree biomass and size[J]. Nature Plants, 2021, 7: 42−49.