[1] 刘金义. 葡萄bZIP转录因子家族的全基因组鉴定、表达分析及VvbZIP45/VvbZIP08(AREB/ABF类)基因的功能研究[D]. 南京: 南京农业大学, 2014.

LIU Jinyi. Genome-wide Identification, Expression Analysis of bZIP Transcription Factor Family and Functional Characterization of VvbZIP45/VvbZIP08(AREB/ABF) Gene in Grapevine(Vitis vinifera spp.) [D]. Nanjing: Nanjing Agricultural University, 2014.
[2] 杨颖, 高世庆, 唐益苗, 等. 植物bZIP转录因子的研究进展[J]. 麦类作物学报, 2009, 29(4): 730 − 737.

YANG Yin, GAO Shiqing, TANG Yimiao, et al. Advance of bZIP transcription factors in plants [J]. Journal of Triticeae Crops, 2009, 29(4): 730 − 737.
[3] 洪岚, 刘旭, 李玲. 植物AREB/ABF转录因子及其参与的ABA信号转导[J]. 植物生理学报, 2011, 47(3): 211 − 217.

HONG Lan, LIU Xu, LI Ling. AREB/ABF transcription factors and their involvement in ABA signal transduction [J]. Plant Physiology Journal, 2011, 47(3): 211 − 217.
[4]

CHOI H I, HONG J H, HA J O, et al. ABFs, a family of ABA-responsive element binding factors [J]. Journal of Biological Chemistry, 2000, 275(3): 1723 − 1730.
[5] 刘计涛. 月季铁蛋白基因RhFer1参与花瓣失水胁迫耐性和衰老进程的功能分析[D]. 北京: 中国农业大学, 2018.

LIU Jitao. Functional Analysis of Rh Ferritinl Involved in Dehydration Tolerance and Senescence of Cut Rose Flowers[D]. Beijing: China Agricultural University, 2018.
[6] 叶方婷, 潘鑫峰, 毛志君, 等. 睡莲转录因子bZIP家族的分子进化以及功能分析[J]. 中国农业科学, 2021, 54(21): 4694 − 4708.

YE Fangting, PAN Xinfeng, MAO Zhijun, et al. Molecular evolution and function analysis of bZIP family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694 − 4708.
[7]

XU Yanjie, ZHAO Xin, PALINUER A, et al. A zinc finger protein BBX19 interacts with ABF3 to negatively affect drought tolerance in chrysanthemum [J]. Plant Journal, 2020, 103(5): 1783 − 1795.
[8] 王英, 张超, 付建新, 等. 桂花花芽分化和花开放研究进展[J]. 浙江农林大学学报, 2016, 33(2): 340 − 347.

WANG Ying, ZHANG Chao, FU Jianxin, et al. Progresses on flower bud differentiation and flower opening in Osmanthus fragrans [J]. Journal of Zhejiang A&F Univiversity, 2016, 33(2): 340 − 347.
[9]

MOU Wangshu, LI Dongdong, LUO Zisheng, et al. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening [J]. Plant Science, 2018, 276: 239 − 249.
[10]

CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
[11] 付建新, 张超, 王艺光, 等. 桂花组织基因表达中荧光定量PCR内参基因的筛选[J]. 浙江农林大学学报, 2016, 33(5): 727 − 733.

FU Jianxin, ZHANG Chao, WANG Yiguang, et al. Reference gene selection for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in the gene expression of sweet osmanthus tissues [J]. Journal of Zhejiang A&F Univiversity, 2016, 33(5): 727 − 733.
[12]

JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106 − 111.
[13]

JI Lexiang, WANG Jia, YE Meixia, et al. Identification and characterization of the populus AREB/ABF subfamily [J]. Journal of Integrative Plant Biology, 2013, 55(2): 177 − 186.
[14]

FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants [J]. Physiologia Plantarum, 2013, 147(1): 15 − 27.
[15] 杨玲, 吴玉乾, 谢晓东, 等. 烟草ABF转录因子基因的克隆与生物信息学分析[J]. 烟草科技, 2014(6): 73 − 81, 92.

YANG Ling, WU Yuqian, XIE Xiaodong, et al. Clone and bioinformatics analysis of ABF transcription factor gene from Nicotiana tabacum [J]. Tobacco Science &Technology, 2014(6): 73 − 81, 92.
[16]

LI Fangfang, MEI Fangming, ZHANG Yifang, et al. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis [J/OL]. BMC Plant Biology, 2020, 20[2022-02-25]. doi: 10.1186/s12870-020-02783-9.
[17] 杨玲. 烟草ABF转录因子基因的克隆及功能分析[D]. 重庆: 重庆大学, 2014.

YANG Ling. Cloning and Functional Analysis of ABF Transcription Factor Gene in Nicotiana tabacum[D]. Chongqing: Chongqing University, 2014.
[18] 刘贺, 黄沁梅, 刘颖婕, 等. 野菊bZIP转录因子全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2022, 20(14): 4586 − 4600.

LIU He, HUANG Qinmei, LIU Yingjie, et al. Genome-wide identification and bioinformatics analysis of Chrysanthemum indicum bZIP transcription factor family [J]. Molecular Plant Breeding, 2022, 20(14): 4586 − 4600.
[19] 李天杰, 吴颖, 高龙飞, 等. 蓝莓ABF转录因子VcABF2基因的克隆与表达分析[J/OL]. 分子植物育种, 2021-11-20[2022-02-25]. http://kns.cnki.net/kcms/detail/46.1068.s.20211117.1020.004.html.

LI Tianjie, WU Ying, GAO Longfei, et al. Cloning and expression analysis of ABF transcription factor gene VcABF2 in blueberry[J/OL]. Mol Plant Breed, 2021-11-20[2022-02-25]. http://kns.cnki.net/kcms/detail/46.1068.s.20211117.1020.004.html.
[20] 林延慧, 唐力琼, 徐靖, 等. 大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学, 2020, 39(5): 728 − 731.

LIN Yanhui, TANG Liqiong, XU Jing, et al. Bioinformatics analysis and interacting protein prediction of soybean bZIP gene glyma04g04170 in response to submergence stress [J]. Soybean Science, 2020, 39(5): 728 − 731.
[21] 熊孟连, 戴星, 简燕, 等. 脱落酸依赖的与非依赖的信号途径的研究进展[J]. 基因组学与应用生物学, 2020, 39(12): 5796 − 5802.

XIONG Menglian, DAI Xing, JIAN Yan, et al. Advances in the study of abscisic acid-dependent and non-dependent signaling pathways [J]. Genomics and Applied Biology, 2020, 39(12): 5796 − 5802.
[22]

ORELLANA S, YAÑEZ M, ESPINOZA A, et al. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato [J]. Plant,Cell &Environment, 2010, 33(12): 2191 − 2208.
[23]

BASTÍAS A, LÓPEZ-CLIMENT M, VALCÁRCEL M, et al. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor [J]. Physiologia Plantarum, 2011, 141(3): 215 − 226.
[24] 胡鹏伟, 何朝勇, 洪岚, 等. AREB/ABF转录因子响应胁迫信号的网络调控[J]. 植物生理学报, 2013, 49(6): 540 − 544.

HU Pengwei, HE Chaoyong, HONG Lan, et al. Internet regulation of AREB transcription factors responsed stress signal [J]. Plant Physiology Journal, 2013, 49(6): 540 − 544.
[25] 涂明星. 葡萄转录因子VlbZIP30抗旱功能及其调控机理研究[D]. 杨凌: 西北农林科技大学, 2021.

TU Mingxing. Drought Resistance Function and Regulation Mechanism Analysis of Grapevine Transcription Factor VlbZIP30 Gene[D]. Yangling: Northwest A&F University, 2021.
[26]

YANG Xiulian, YUE Yuanzheng, LI Haiyan, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans[J/OL]. Horticulture Research, 2018, 5: 72[2022-02-25]. doi: 10.1038/s41438-018-0108-0.
[27]

LI Qi, ZHAO Haixia, WANG Xiaoli, et al. Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2.6, can improve salt/drought resistance in transgenic Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2020, 21(3): 1123[2022-02-25]. doi: 10.3390/ijms21031123.
[28]

ZHAO Biyan, HU Yufeng, LI Juanjuan, et al. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis[J/OL]. Botanical Studies, 2016, 57: 12[2022-02-25]. doi: 10.1186/s40529-016-0127-9.
[29]

MOU Wangshu, LI Dongdong, BU Jianwen, et al. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening[J]. PLoS One, 2016, 11(4): e0154072[2022-02-25]. doi: 10.1371/journal. pone.0154072.
[30] 牟望舒. 脱落酸及脱落酸-乙烯互作调控番茄果实成熟的效应与机理[D]. 杭州: 浙江大学, 2019.

MOU Wangshu. The Roles and Mechanism of Abscisic Acid and Abscisic Acid-ethylene Crosstalk in the Regulation of Tomato Fruit Ripening[D]. Hangzhou: Zhejiang University, 2019.
[31] 魏明, 王含, 李成浩. 毛果杨PtAREB9基因启动子的克隆与功能初步分析[J]. 植物生理学报, 2015, 51(11): 1927 − 1932.

WEI Ming, WANG Han, LI Chenghao, et al. Cloning and functional identification of promoter region of PtAREB9 from Populus trichocarpa [J]. Plant Physiology Journal, 2015, 51(11): 1927 − 1932.
[32] 崔院院, 郭先锋, 邢树堂, 等. 脱落酸在牡丹切花衰老中的作用[J]. 中国农学通报, 2015, 31(22): 136 − 141.

CUI Yuanyuan, GUO Xianfeng, XING Shutang, et al. Role of abscisic acid in senescence of tree peony cut rlower [J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 136 − 141.