[1] 郑万钧. 中国树木志[M]. 北京: 中国林业出版社, 1985: 23 − 76.

ZHENG Wanjun. Chinese Tree Chronicles [M]. Beijing: China Forestry Pulishing House, 1985: 23 − 76.
[2] 冯连芬, 吕芳德, 张亚萍, 等. 我国核桃育种及其栽培技术研究进展[J]. 经济林研究, 2006, 24(2): 69 − 73.

FENG Lianfen, LÜ Fangde, ZHANG Yaping, et al. Literature review of researches on breeding and cultivation techniques of Chinese walnut [J]. Non-wood Forest Research, 2006, 24(2): 69 − 73.
[3] 张志华, 裴东. 核桃学[M]. 北京: 中国农业出版社, 2018.

ZHANG Zhihua, PEI Dong. Walnut Science [M]. Beijing: China Agricultural Press, 2018.
[4] 宫峥嵘, 王一峰, 王瀚, 等. 核桃矿质营养研究进展[J]. 林业科学, 2021, 57(1): 178 − 190.

GONG Zhengrong, WANG Yifeng, WANG Han, et al. Research progress on mineral nutrition of walnut [J]. Scientia Silvae Sinicae, 2021, 57(1): 178 − 190.
[5] 李忠新, 杨莉玲, 阿布力孜·巴斯提, 等. 中国核桃产业发展研究[J]. 中国农机化学报, 201, 34(4): 23 − 28.

LI Zhongxin, YANG Liling, Abulizi Basiti, et al. Research on the development of walnut industry in China [J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4) : 23 − 28.
[6] 梁智, 周勃, 邹耀湘. 核桃树体生物量构成及矿质营养元素累积特性研究[J]. 果树学报, 2012, 29(1): 139 − 142.

LIANG Zhi, ZHOU Bo, ZOU Yaoxiang. Compositional analysis of biomass and accumulation properties of mineral elements in Walnut [J]. Journal of Fruit Science, 2012, 29(1): 139 − 142.
[7]

ROBERTSON G P, VITOUSEK P M. Nitrogen in agriculture: balancing the cost of an essential resource [J]. Annual Review of Environment and Resources, 2009, 34(1): 97 − 125.
[8] 闫小莉, 林智熠, 胡文佳, 等. 林木氮素吸收偏好性及其形成机制研究进展[J]. 世界林业研究, 2020, 33(5): 25 − 30.

YAN Xiaoli, LIN Zhiyi, HU Wenjia, et al. A review of nitrogen uptake preference of trees and its formation mechanism [J]. World Forestry Research, 2020, 33(5): 25 − 30.
[9]

ZHOU Mingxin, YAN Guoyong, XING Yajuan, et al. Nitrogen deposition and decreased precipitation does not change total nitrogen uptake in a temperate forest [J]. Science of the Total Environment, 2019, 651: 32 − 41.
[10]

NACRY P, BOUGUYOU E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource [J]. Plant and Soil, 2013, 370(1/2): 1 − 29.
[11]

WANG Miaoyuan, SIDDIQI M Y, RUTH T J, et al. Ammonium uptake by rice roots (Ⅱ. kinetics of 13 \begin{document}${\rm{NH}}_4^+ $\end{document} influx across the plasmalemma) [J]. Plant Physiology, 1993, 103: 1259 − 1267.
[12] 骆媛媛, 柳参奎. 植物中铵转运蛋白的研究进展[J]. 基因组学与应用生物学, 2009, 28(2): 373 − 379.

LUO Yuanyuan, LIU Shenkui. Research progress of ammonium transporters in plants [J]. Genomics and Applied Biology, 2009, 28(2): 373 − 379.
[13] 李园枚, 傅明辉, 蒋丽花. 植物铵转运蛋白研究进展[J]. 广东农业科学, 2012, 39(19): 142 − 145.

LI Yuanmei, FU Minghui, JIANG Lihua. Research progress on plant AMT [J]. Guangdong Agricultural Sciences, 2012, 39(19): 142 − 145.
[14]

YUAN Lixing, LOQUÉ D, KOJIMA S. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters [J]. The Plant Cell, 2007, 19(8): 2636 − 2652.
[15]

YUAN Lixing, GRAFF L, LOQUÉ D. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis [J]. Plant and Cell Physiology, 2009, 50(1): 13 − 25.
[16]

GIEHL R F H, LAGINHA A M, DUAN Fengying, et al. A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis [J]. Molecular Plant, 2017, 10(11): 1449 − 1460.
[17]

COUTURIER J, MONTANINI B, MARTIN F, et al. The expanded family of ammonium transporters in the perennial poplar plant [J]. New Phytologist, 2007, 174(1): 137 − 150.
[18]

GU Riliang, DUAN Fengying, AN Xia, et al. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L. ) [J]. Plant and Cell Physiology, 2013, 54(9): 1515 − 1524.
[19]

MAYER M, DYNOWSKI M, LUDEWIG U. Ammonium ion transport by the AMT/Rh homologue LeAMT1;1 [J]. The Biochemical Journal, 2006, 396(3): 431 − 437.
[20]

PEARSON J N, FINNEMANN J, SCHJOERRING J K. Regulation of the high-affinity ammonium transporter (BnAMT1;2) in the leaves of Brassica napus by nitrogen status [J]. Plant Molecular Biology, 2002, 49(5): 483 − 490.
[21] 刘会君. 核桃JrAMT基因的克隆与功能分析[D]. 杭州: 浙江农林大学, 2019.

LIU Huijun. Cloning and Functional Analysis of Walnut JrAMT Gene [D]. Hangzhou: Zhejiang A&F University, 2019.
[22] 胡恒康, 江香梅, 张启香, 等. 碳源对山核桃体细胞胚发生和植株再生的影响[J]. 浙江农林大学学报, 2011, 28(6): 911 − 917.

HU Hengkang, JIANG Xiangmei, ZHANG Qixiang, et al. Somatic embryogenesis and plant regeneration from Carya cathayensis embryos using different carbon source [J]. Journal of Zhejiang A&F University, 2011, 28(6): 911 − 917.
[23]

ZHANG Qixiang, WALAWAGE S L, TRICOLI D M, et al. A red fluorescent protein (DsRED) from Discosoma sp. as a reporter for gene expression in walnut somatic embryos [J]. Plant Cell Reports, 2015, 34(5): 861 − 869.
[24]

LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method [J]. Methods, 2011, 25(4): 402 − 408.
[25] 任飞, 张佳琦, 胡恒康, 等. 红色荧光蛋白基因DsRED在核桃植株再生过程中的表达稳定性[J]. 林业科学, 2020, 56(12): 166 − 176.

REN Fei, ZHANG Jiaqi, HU Hengkang, et al. Expression stability of red fluorescent protein gene DsRED in the regeneration of walnut (Juglans regia) plant [J]. Scientia Silvae Sinicae, 2020, 56(12): 166 − 176.
[26] 张志良, 瞿伟菁, 李小芳. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009.

ZHANG Zhiliang, ZHAI Weijing, LI Xiaofang. Experimental Guidance of Plant Physiology [M]. Beijing: Higher Education Press, 2009.
[27]

SCHANSKER G, SRIVASTAVA A, GOVINDJEE G. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves [J]. Functional Plant Biology, 2003, 30(7): 785 − 796.
[28]

CHEN Mengyun, ZHU Kaikai, XIE Junyi, et al. Genome-wide identification and expression analysis of AMT and NRT gene family in pecan (Carya illinoinensis) seedlings revealed a preference for NH4 +-N [J/OL]. International Journal of Molecular Sciences, 2022, 23(21): 13314[2023-04-10]. doi: 10.3390/ijms232113314.
[29]

YANG Yanci, ZHOU Tao, DUAN Dong, et al. Comparative analysis of the complete chloroplast genomes of five Quercus species [J/OL]. Frontiers in Plant Science, 2016, 7: 959[2023-04-10]. doi: 10.3399/fpls.2016.00959.
[30] 陆景陵. 植物营养学: 上册[M]. 北京: 中国农业大学出版社, 1994.

LU Jingling. Plant Nutrition: Volume One [M]. Beijing: China Agricultural University Press, 1994.
[31] 栾江, 仇焕广, 井月, 等. 我国化肥施用量持续增长的原因分解及趋势预测[J]. 自然资源学报, 2013, 28(11): 1869 − 1878.

LUAN Jiang, QIU Huanguang, JING Yue, et al. Decomposition of factors contributed to the increase of China’s chemical fertilizer use and projections for future fertilizer use in China [J]. Journal of Natural Resources, 2013, 28(11): 1869 − 1878.
[32] 李玉静, 冯雨晴, 赵园园, 等. 不同形态氮素吸收利用及其对植物生理代谢影响的综述[J]. 中国农业科技导报, 2023, 25(2): 128 − 139.

LI Yujing, FENG Yuqing, ZHAO Yuanyuan, et al. Review of absorption and utilization of different nitrogen forms and their effects on plant physiological metabolism [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 128 − 139.
[33]

LOQUÉ D, von WIRÉN N. Regulatory levels for the transport of ammonium in plant roots [J]. Journal of Experimental Botany, 2004, 55(401): 1293 − 1305.
[34]

GARCIA-MATA C, LAMATTIA L. Nitric oxide and abscisic acid cross talk in guard cells [J]. Plant Physiology, 2002, 128(3): 790 − 792.
[35]

von WIRÉN N, GAZZARRINI S, GOJON A, et al. The molecular physiology of ammonium uptake and retrieval [J]. Current Opinion in Plant Biology, 2000, 3(3): 254 − 261.
[36] 李畅. 水稻铵转运蛋白基因OsAMT1.1和OsAMT2.1生物学功能分析[D]. 南京: 南京农业大学, 2016.

LI Chang. Function Analysis of Rice Ammonium Transporter Genes OsAMT1.1 and OsAMT2.1 [D]. Nanjing: Nanjing Agricultural University, 2016.
[37] 夏金泽, 刘银弟, 王太行, 等. 木薯铵转运蛋白基因MeAMT2.6的克隆及表达模式分析[J]. 分子植物育种, 2022, 20(6): 1748 − 1754.

XIA Jinze, LIU Yindi, WANG Taihang, et al. Cloning and expression pattern analysis of the ammonium transporter gene MeAMT2.6 from Cassava [J]. Molecular Plant Breeding, 2022, 20(6): 1748 − 1754.
[38]

LI Hui, CHANG Youhong, LIN Jing. Two AMT2-type ammonium transporters from Pyrus betulaefolia demonstrate distinct expression characteristics [J]. Plant Molecular Biology Reporter, 2016, 34: 707 − 719.
[39]

COOKE J E K, BROWN K A, WU R, et al. Gene expression associated with N-induced shifts in resource allocation in poplar [J]. Plant Cell &Environment, 2003, 26(5): 757 − 770.
[40]

SUENAGA A, MORIYA K, SONODA Y, et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants [J]. Plant and Cell Physiology, 2003, 44(2): 206 − 211.
[41]

MONNEVEUX P, ZAIDI P H, SANCHEZ C. Population density and low nitrogen affects yield-associated traits in tropical maize [J]. Crop Science, 2005, 45(2): 535 − 545.