[1] 国家药典委员会. 中华人民共和国药典 (一部)[M]. 北京: 中国医药科技出版社, 2020: 243 − 244.

National Pharmacopoeia Board. Chinese Pharmacopoeia (Volume Ⅰ)[M]. Beijing: China Medical Science Press, 2020: 243 − 244.
[2]

LIU C, SRIVIDYA N, PARRISH A N, et al. Morphology of glandular trichomes of Japanese catnip (Schizonepeta tenuifolia Briquet) and developmental dynamics of their secretary activity [J]. Phytochemistry, 2018, 150: 23 − 30.
[3] 樊佳新, 王帅, 孟宪生, 等. HPLC法测定不同产地荆芥中6种黄酮类成分[J]. 中草药, 2017, 48(11): 2292 − 2295.

FAN Jiaxin, WANG Shuai, MENG Xiansheng, et al. Determination of six flavonoids in Schizonepeta tenuifolia from different areas by HPLC [J]. Chinese Traditional and Herbal Drugs, 2017, 48(11): 2292 − 2295.
[4]

FEDERICO DA, PABLO A M, CARLOS A D, et al. The true story of the HD-Zip family [J]. Trends in Plant Science, 2007, 12(9): 419 − 426.
[5] 李媛. 大麦HD-Zip基因家族分析及功能研究[D]. 西宁: 青海大学, 2020.

LI Yuan. Analysis and Functional Study of HD-Zip Gene Family in Barley [D]. Xining: Qinghai University, 2020.
[6]

SESSA G, CARABELLUI M, POSSENTI M, et al. Multiple links between HD-Zip proteins and hormone networks[J/OL]. International Journal of Molecular Sciences, 2018, 19(12): 4047[2022-05-04]. doi: 10.3390/ijms19124047.
[7]

MIYUKI N, HIROSHI K, MITSUTOMO A, et al. Characterization of the class Ⅳ homeodomain-leucine zipper gene family in Arabidopsis [J]. Plant Physiology, 2006, 141(4): 1363 − 1375.
[8]

BRANDT R, CABEDO M, XIE Y, et al. Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment [J]. Journal of Integrative Plant Biology, 2014, 56(6): 518 − 526.
[9]

LI Yuxia, YANG Zongran, ZHANG Yuanyuan, et al. The roles of HD-ZIP proteins in plant a biotic stress tolerance[J/OL]. Frontiers in Plant Science, 2022, 13: 1027071[2022-05-04]. doi: 10.3389/fpls.2022.1027071.
[10]

YUE Hong, SHU Duntao, WANG Meng, et al. Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L. )[J/OL]. Genes, 2018, 9(2): 70[2022-05-02]. doi: 10.3390/genes9020070.
[11]

CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
[12]

MA Gang, ZELMAN A K, APICELLA P V, et al. Genome-wide identification and expression analysis of homeodomain leucine zipper subfamily Ⅳ(HD-Zip Ⅳ) gene family in Cannabis sativa L. [J/OL]. Plants. 2022, 11(10): 1307[2022-05-02]. doi: 10.3390/plants11101307.
[13]

ZHAO Yang, ZHOU Yuqing, JIANG Haiyan, et al. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize[J/OL]. PLoS One, 2011, 6(12): e28488[2022-05-02]. doi: 10.1371/journal.pone.0028488.
[14]

WANG Zhong, WANG Shanshan, XIAO Yansong, et al. Functional characterization of a HD-Zip Ⅳ transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum [J]. Plant Physiology and Biochemistry, 2020, 146: 259 − 268.
[15]

WAN Li, DONG Jieya, CAO Minxuan, et al. Genome-wide identification and characterization of HD-Zip genes in potato [J]. Genes, 2019, 697: 103 − 117.
[16]

SCHRICK K, NGUYEN D, KARLOWSKI W M, et al. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors[J/OL]. Genome Biology, 2004, 5: R41[2022-05-02]. doi: 10.1186/gb-2004-5-6-r41.
[17]

MUKHERIEE K, BURGLIN TR, MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper Ⅲ proteins[J]. Plant Physiology, 2006, 140(4): 1142 − 1150.
[18]

GUO Qing, JIANG Jiahui, YAO Wenjing, et al. Genome-wide analysis of poplar HD-Zip family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii × P. nigra[J/OL]. Plant Science, 2021, 311: 111021[2022-11-21]. doi: 10.1016/j.plantsci.2021.111021.
[19] 邵晨冰, 黄志楠, 白雪滢, 等. 辣椒HD-Zip基因家族鉴定、系统进化及表达分析[J]. 中国农业科学, 2020, 53(5): 1004 − 1017.

SHAO Chenbing, HUANG Zhinan, BAI Xueying, et al. Identification, systematic evolution and expression analysis of HD-Zip gene family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004 − 1017.
[20]

NAOKO K, HITOMI O, YOSHIBUMI K, et al. Mutations in epidermis-specific HD-Zip Ⅳ genes affect floral organ identity in Arabidopsis thaliana [J]. The Plant Journal, 2013, 75(3): 430 − 440.
[21]

CHALVIN C, DRE VENSK S, DRON M, et al. Genetic control of glandular trichome development [J]. Trends in Plant Science, 2020, 25(5): 477 − 487.
[22]

YAN Tingxiang, CHEN M, SHEN Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua [J]. New Phytologist, 2017, 213(3): 1145 − 1155.
[23]

HULSKAMP M, MISRA S, JURGENS G. Genetic dissection of trichome cell development in Arabidopsis [J]. Cell, 1994, 76(3): 555 − 566.
[24] 蒋征, 王红, 吴啟南, 等. 荆芥穗药材腺鳞内含物定性及3种主要萜类的定量研究[J]. 中药材, 2016, 39(1): 31 − 36.

JIANG Zheng, WANG Hong, WU Qi’nan, et al. Qualitative and quantitative analysis of major constituents of gland products in peltate glandular trichomes of Schizonepetae Spica [J]. Journal of Chinese Medicinal Materials, 2016, 39(1): 31 − 36.
[25]

ZHOU Peina, DANG Jingjie, SHI Zunrui, et al. Identification and characterization of a novel gene involved in glandular trichome development in Nepeta tenuifolia[J/OL]. Frontiers in Plant Science, 2022, 13: 936244[2022-05-02]. doi: 10.3389/fpls.2022.936244.