[1] FANG Jingyun, CHEN Anping, PENG Changhui, et al. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001, 292(5525): 2320 − 2322.
[2] GATTI L V, BASSO L S, MILLER J B, et al. Amazonia as a carbon source linked to deforestation and climate change [J]. Nature, 2021, 595(7867): 388 − 893.
[3] PAN Yude, BIRDSEY R A, FANG Jingyun, et al. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333(6045): 988 − 993.
[4] DASKALOVA G N, MYERS-SMITH I H, BJORKMAN A D, et al. Landscape-scale forest loss as a catalyst of population and biodiversity change [J]. Science, 2020, 368(6497): 1341 − 1347.
[5] DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263(5144): 185 − 190.
[6] FORZIERI G, DAKOS V, MCDOWELL N G, et al. Emerging signals of declining forest resilience under climate change [J]. Nature, 2022, 608(7923): 534 − 539.
[7] SEIBOLD S, RAMMER W, HOTHORN T, et al. The contribution of insects to global forest deadwood decomposition [J]. Nature, 2021, 597(7874): 77 − 81.
[8] COHEN W B, YANG Zhiqiang, STEHMAN S V, et al. Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline [J]. Forest Ecology and Management, 2016, 360: 242 − 252.
[9] EDWARDS D P, TOBIAS J A, SHEIL D, et al. Maintaining ecosystem function and services in logged tropical forests [J]. Trends in Ecology &Evolution, 2014, 29(9): 511 − 520.
[10] PFLUGMACHER D, COHEN W B, KENNEDY R E. Using landsat-derived disturbance history (1972–2010) to predict current forest structure [J]. Remote Sensing of Environment, 2012, 122: 146 − 165.
[11] 沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5): 1438 − 1449.

SHEN Wenjuan, LI Mingshi. Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations [J]. Acta Ecologica Sinica, 2017, 37(5): 1438 − 1449.
[12]

TURNER D P, RITTS W D, KENNEDY R E, et al. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance[J/OL]. Carbon Balance and Management, 2015, 10[2023-04-21]. doi: 10.1186/s13021-015-0022-9.
[13] 马晓哲, 王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报, 2015, 35(17): 5898 − 5907.

MA Xiaozhe, WANG Zheng. Progress in the study on the impact of land-usr change on reginal carbon doruces and sinks [J]. Acta Ecologica Sinica, 2015, 35(17): 5898 − 5907.
[14] 曲福田, 卢娜, 冯淑怡. 土地利用变化对碳排放的影响[J]. 中国人口·资源与环境, 2011, 21(10): 76 − 83.

QU Futian, LU Na, FENG Suyi. Effect of landuse change emissions [J]. China Population,Resources and Environment, 2011, 21(10): 76 − 83.
[15] 周剑芬, 管东生. 森林土地利用变化及其对碳循环的影响[J]. 生态环境, 2004, 13(4): 674 − 676.

ZHOU Jianfen, GUAN Dongsheng. Change in the use of forest land and its impact on the carbon cycling [J]. Ecology and Environment, 2004, 13(4): 674 − 676.
[16] 沈文娟, 李明诗, 黄成全. 长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6): 1005 − 1022.

SHEN Wenjuan, LI Mingshi, HUANG Chengquan. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion [J]. Journal of Remote Sensing, 2018, 22(6): 1005 − 1022.
[17]

HOUGHTON R A. Aboveground forest biomass and the global carbon balance [J]. Global Change Biology, 2005, 11(6): 945 − 958.
[18] 吕莹莹, 庄义琳, 任芯雨, 等. 南京城市森林干扰及恢复自动制图[J]. 应用生态学报, 2016, 27(2): 429 − 435.

LÜ Yingying, ZHUANG Yilin, REN Xinyu, et al. Automated mapping of urban forests’ disturbance and recovery in Nanjing, China [J]. Chinese Journal of Applied Ecology, 2016, 27(2): 429 − 435.
[19] 刘姗姗, 黄鑫毅, 赵帅, 等. 基于LandTrendr模型的亚热带森林干扰与恢复动态变化分析[J]. 亚热带资源与环境学报, 2020, 15(4): 15 − 22.

LIU Shanshan, HUANG Xinyi, ZHAO Shuai, et al. Analysis of forest disturbance and recovery dynamic characteristics based on LandTrendr Time segmental algorithm [J]. Journal of Subtropical Resources and Environment, 2020, 15(4): 15 − 22.
[20]

COPPIN P, JONCKHEERE I, NACKAERTS K, et al. Digital change detection methods in ecosystem monitoring: a review [J]. International Journal of Remote Sensing, 2004, 25(9): 1565 − 1596.
[21]

BANSKOTA A, KAYASTHA N, FALKOWSKI M J, et al. Forest monitoring using Landsat time series data: a review [J]. Canadian Journal of Remote Sensing, 2014, 40(5): 362 − 384.
[22] 祝善友, 张莹, 张海龙, 等. Landsat卫星图像用于大面积森林扰动监测的研究进展[J]. 国土资源遥感, 2014, 26(2): 5 − 10.

ZHU Shanyou, ZHANG Ying, ZHANG Hailong, et al. Progress of researches of on monitoring large-area forest disturbance by Landsat satllite images [J]. Remote Sensing for Land &Resources, 2014, 26(2): 5 − 10.
[23] 杨辰, 沈润平, 郁达威, 等. 利用遥感指数时间序列轨迹监测森林扰动[J]. 遥感学报, 2013, 17(5): 1246 − 1263.

YANG Chen, SHEN Runping, YU Dawei, et al. Forest disturbance monitoring based on the time-series trajectory of remote sensing index [J]. Journal of Remote Sensing, 2013, 17(5): 1246 − 1263.
[24]

HUANG Chengquan, GOWARD S N, MASEK J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks [J]. Remote Sensing of Environment, 2010, 114(1): 183 − 198.
[25]

KENNEDY R E, YANG Zhiqiang, COHEN W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms [J]. Remote Sensing of Environment, 2010, 114(12): 2897 − 2910.
[26]

OBATA S, BETTINGER P, CIESZEWSKI C J, et al. Mapping forest disturbances between 1987–2016 using all available time series landsat TM/ETM+ imagery: developing a reliable methodology for Georgia, United States [J/OL]. Forests, 2020, 11(3): 335[2023-04-20]. doi:10.3390/f11030335.
[27]

SCHLEEWEIS K G, MOISEN G G, SCHROEDER T A, et al. US national maps attributing forest change: 1986–2010 [J/OL]. Forests, 2020, 11(6): 653[2023-08-20]. doi: 10.3390/f11060653.
[28]

VERBESSELT J, HYNDMAN R, NEWNHAM G, et al. Detecting trend and seasonal changes in satellite image time series [J]. Remote Sensing of Environment, 2010, 114(1): 106 − 115.
[29]

BRIGHT B C, HUDAK A T, KENNEDY R E, et al. Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3440 − 3452.
[30]

YANG Yongjun, ERSKINE P D, LECHNER A M, et al. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm [J]. Journal of Cleaner Production, 2018, 178: 353 − 362.
[31]

YAN Jining, WANG Lizhe, SONG Weijing, et al. A time-series classification approach based on change detection for rapid land cover mapping [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158: 249 − 262.
[32]

WANG Zhenyu, LECHNER A M, YANG Yongjun, et al. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services[J/OL]. Science of the Total Environment, 2020, 717: 137214[2023-04-21]. doi: 10.1016/j.scitotenv.2020.137214.
[33]

SAXENA R, WATSON L T, WYNNE R H, et al. Towards a polyalgorithm for land use change detection [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144(1): 217 − 234.
[34]

COHEN W B, HEALEY S P, YANG Zhiqiang, et al. How similar are forest disturbance maps derived from different Landsat time series algorithms? [J/OL]. Forests, 2017, 8(4): 98[2023-04-20]. doi:10.3390/f8040098.
[35] 刘双娜, 周涛, 魏林艳, 等. 中国森林植被的碳汇/源空间分布格局[J]. 科学通报, 2012, 57(11): 943 − 950.

LIU Shuangna, ZHOU Tao, WEI Linyan, et al. The spatial distribution of forest carbon sinks and sources in China [J]. Chinese Science Bulletin, 2012, 57(11): 943 − 950.
[36]

CHEN Wenjun, CHEN J M, PRICE D T, et al. Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada [J]. Canadian Journal of Forest Research, 2002, 32(5): 833 − 842.
[37]

ZHANG Xiao, LIU Liangyun, CHEN Xidong, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery [J]. Earth System Science Data, 2021, 13(6): 2753 − 2776.
[38]

COHEN W B, YANG Zhiqiang, HEALE S P, et al. A LandTrendr multispectral ensemble for forest disturbance detection [J]. Remote Sensing of Environment, 2018, 205: 131 − 140.
[39]

GROGAN K, PFLUGMACHER D, HOSTERT P, et al. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series [J]. Remote Sensing of Environment, 2015, 169: 438 − 453.
[40]

COHEN W B, YANG Zhiqiang, KENNEDY R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync: tools for calibration and validation [J]. Remote Sensing of Environment, 2010, 114(12): 2911 − 2924.
[41]

KENNEDY R E, YANG Zhiqiang, GORELICK N, et al. Implementation of the LandTrendr Algorithm on Google Earth Engine [J/OL]. Remote Sensing, 2018, 10(5): 691[2023-04-20]. doi:10.3390/rs10050691.
[42]

XU Hanzeyu, WEI Yuchun, LIU Chong, et al. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google Earth Engine[J/OL]. Remote Sensing, 2019, 11(16): 1891[2023-04-20]. doi: 10.3390/rs11161891.
[43] 曹坤芳, 常杰. 突发气象灾害的生态效应: 2008年中国南方特大冰雪灾害对森林生态系统的破坏[J]. 植物生态学报, 2010, 34(2): 123 − 124.

CAO Kunfang, CHANG Jie. The ecological effects of an unusual climatic disaster: the destruction to forest ecosystems by the extremely heavy glaze and snow storms occurred in early 2008 in southern China [J]. Chinese Journal of Plant Ecology, 2010, 34(2): 123 − 124.
[44] 殷崎栋, 柳彩霞, 田野. 基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究——以陕西柴松和太白山保护区为例[J]. 生态学报, 2020, 40(20): 7343 − 7352.

YIN Qidong, LIU Caixia, TIAN Ye. Detecting dynamics of vegetaion disturbance in forest natural reserve using Landsat imagery and Landtrendr algorithm: the case of Chaisong and Taibaishan Natural Reserves in Shaanxi, China [J]. Acta Ecologica Sinica, 2020, 40(20): 7343 − 7352.
[45]

SHEN Jianing, CHEN Guangsheng, HUA Jianwen, et al. Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and Machine-Learning Method [J/OL]. Remote Sensing, 2022, 14(13): 3238[2023-04-20]. doi: 10.3390/rs14133238.
[46]

HUA Jianwen, CHEN Guangsheng, YU Lin, et al. Improved mapping of long-term forest disturbance and recovery dynamics in the subtropical China using all available Landsat Time-Series Imagery on Google Earth Engine Platform [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2754 − 2768.