[1] 鲁顺保, 饶玮, 彭九生, 等. 立地条件对毛竹生物量的影响研究[J]. 浙江林业科技, 2008, 28(4): 22 − 27.

LU Shunbao, RAO Wei, PENG Jiusheng, et al. Effect of site conditions on biomass of Phyllostachys heterocycla var. pubescens [J]. J Zhejiang For Sci Technol, 2008, 28(4): 22 − 27.
[2] 漆良华, 刘广路, 范少辉, 等. 不同抚育措施对闽西毛竹林碳密度、碳储量与碳格局的影响[J]. 生态学杂志, 2009, 28(8): 1482 − 1488.

QI Lianghua, LIU Guanglu, FAN Shaohui, et al. Effects of different tending measures on carbon density, storage and allocation pattern of Phyllostachys edulis forests in western Fujian Province [J]. J Chin Ecol, 2009, 28(8): 1482 − 1488.
[3] 唐思嘉. 毛竹林立地分类与立地质量评价研究[D]. 杭州: 浙江农林大学, 2017.

TANG Sijia. Study on Site Classification and Site Quality Evaluation of Phyllostachys pubescen Forest[D]. Hangzhou: Zhejiang A&F University, 2017.
[4] 范叶青, 周国模, 施拥军, 等. 坡向坡位对毛竹林生物量与碳储量的影响[J]. 浙江农林大学学报, 2012, 29(3): 321 − 327.

FANG Yeqing, ZHOU Guomo, SHI Yongjun, et al. Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand [J]. J Zhejiang A&F Univ, 2012, 29(3): 321 − 327.
[5] 王晨. 外界因素对皖南毛竹地上生物量以及竹笋生长特性的影响[D]. 合肥: 安徽农业大学, 2014.

WANG Chen. Effects of Extraneous Factors on the Moso Bamboo Aboveground Biomass and Bamboo Shoots Growth Characteristics[D]. Hefei: Anhui Agriculture University, 2014.
[6] 姚爱静, 朱清科, 张宇清, 等. 林分结构研究现状与展望[J]. 林业调查规划, 2005, 30(2): 70 − 76.

YAO Aijing, ZHU Qingke, ZHANG Yuqing, et al. Present situation and prospect of the study on stand structure [J]. For Invent Plann, 2005, 30(2): 70 − 76.
[7] 余林. 皖南毛竹林密度效应研究[D]. 北京: 中国林业科学研究院, 2011.

YU Lin. Study on Density Effect of Phyllostachys edulis Stands in Southern Anhui Province[D]. Beijing: Chinese Academy of Forestry, 2011.
[8] 刘恩斌, 施拥军, 李永夫, 等. 浙江毛竹林分非空间结构特征及其动态变化[J]. 林业科学, 2013, 49(9): 1 − 7.

LIU Enbin, SHI Yongjun, LI Yongfu, et al. Non spatial structural characteristic of moso bamboo forest and its dynamics in Zhejiang Province [J]. Sci Silv Sin, 2013, 49(9): 1 − 7.
[9] 汤孟平, 徐文兵, 陈永刚, 等. 天目山近自然毛竹林空间结构与生物量的关系[J]. 林业科学, 2011, 47(8): 1 − 6.

TANG Mengping, XU Wenbing, CHEN Yonggang, et al. Relationship between spatial structure and biomass of a close-to-nature Phyllostachys edulis stand in Tianmu Mountain [J]. Sci Silv Sin, 2011, 47(8): 1 − 6.
[10] 汤孟平, 刘恩斌, 仇建习, 等. 毛竹林结构分析[M]. 北京: 科学出版社, 2017.
[11]

BREIMAN L. Random forests [J]. Mach Learn, 2001, 45(1): 5 − 32.
[12]

OLSHEN R A, BREIMAN L, FRIEDMAN J H, et al. Classification and Regression Trees [M]. Chicago: Chapman and Hall, 1984.
[13]

LIAW A, WIENER M. Classification and regression by random forest [J]. R News, 2002, 2(3): 18 − 22.
[14]

BREIMAN L. Statistical modeling: the two cultures [J]. Stat Sci, 2001, 16(3): 199 − 231.
[15]

LIN Nan, WU Baolin, JANSEN R, et al. Information assessment on predicting protein-protein interactions [J]. Bmc Bioinf, 2004, 5(1): 154 − 159.
[16] 梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 2016, 52(1): 89 − 98.

LIANG Huiling, LIN Yurui, YANG Guang, et al. Application of random forest algorithm on the forest fire prediction in Tahe Area based on meteorological factors [J]. Sci Silv Sin, 2016, 52(1): 89 − 98.
[17] 陈亮, 周国模, 杜华强, 等. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1 − 12.

CHEN Liang, ZHOU Guomo, DU Huaqiang, et al. Simulation of CO2 flux and controlling factors in moso bamboo forest using random forest algorithm [J]. Sci Silv Sin, 2018, 54(8): 1 − 12.
[18]

CUTLER D R, EDWARDS T C, BEARD K H, et al. Random forests for classification in ecology [J]. Ecology, 2007, 88(11): 2783 − 2792.
[19] 吴兆龙, 丁晓. 结构方程模型的理论、建立与应用[J]. 科技管理研究, 2004, 24(6): 90 − 92.

WU Zhaolong, DING Xiao. Theory, establishment and application of structural equation model [J]. Sci Technol Manage Res, 2004, 24(6): 90 − 92.
[20]

LALIBERTÉ E, TYLIANAKIS J M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning [J]. Ecology, 2012, 93(1): 145 − 155.
[21]

STOMP M, HUISMAN J, MITTELBACH G G, et al. Large-scale biodiversity patterns in freshwater phytoplankton [J]. Ecol, 2011, 92(11): 2096 − 2107.
[22] 黄兴召, 许崇华, 徐俊, 等. 利用结构方程解析杉木林生产力与环境因子及林分因子的关系[J]. 生态学报, 2017, 37(7): 2274 − 2281.

HUANG Xingzhao, XU Chonghua, XU Jun, et al. Structural equation model analysis of the relationship between environmental and stand factors and net primary productivity in Cunninghamia lanceolata forests [J]. Acta Ecol Sin, 2017, 37(7): 2274 − 2281.
[23]

KANG Muyi, DAI Cheng, JI Wenyao, et al. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China [J]. PLoS One, 2013, 8(7): e69561. doi: 10.1370/journal.pone.0069561.
[24] 汤孟平, 徐文兵, 陈永刚, 等. 毛竹林空间结构优化调控模型[J]. 林业科学, 2013, 49(1): 120 − 125.

TANG Mengping, XU Wenbing, CHEN Yonggang, et al. Spatial structure optimizing adjustment and control model of Phyllostachys edulis stand [J]. Sci Silv Sin, 2013, 49(1): 120 − 125.
[25] 汤孟平, 陈永刚, 施拥军, 等. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11): 4707 − 4716.

TANG Mengping, CHEN Yonggang, SHI Yongjun, et al. Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram [J]. Acta Ecol Sin, 2007, 27(11): 4707 − 4716.
[26] 汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8): 46 − 53.

TANG Mengping, LOU Minghua, CHEN Yonggang, et al. Comparative analyses on different mingling indices [J]. Sci Silv Sin, 2012, 48(8): 46 − 53.
[27] 周国模. 毛竹林生态系统中碳储量、固定及其分配与分布的研究[D]. 杭州: 浙江大学, 2006.

ZHOU Guomo. Study on Carbon Storage, Sequestration, Allocation and Distribution in Phyllostachys pubescens Ecosystem[D]. Hangzhou: Zhejiang University, 2006.
[28] 范叶青, 周国模, 施拥军, 等. 地形条件对毛竹林分结构和植被碳储量的影响[J]. 林业科学, 2013, 49(11): 177 − 182.

FAN Yeqing, ZHOU Guomo, SHI Yongjun, et al. Effects of terrain on stand structure and vegetation carbon storage of Phyllostachys edulis forest [J]. Sci Silv Sin, 2013, 49(11): 177 − 182.
[29] 崔鸿侠, 熊德礼, 张维, 等. 不同立地条件对毛竹生长影响研究[J]. 湖北林业科技, 2008(1): 8 − 11.

CUI Hongxia, XIONG Deli, ZHANG Wei, et al. Study of effects of different site condition on growth of Phyllostachys pubescens Mazel [J]. Hubei For Sci Technol, 2008(1): 8 − 11.
[30]

RCHER K J, KIMES R V. Empirical characterization of random forest variable importance measures [J]. Comput Stat Data Anal, 2008, 52(4): 2249 − 2260.
[31]

GRACE J B, ANDERSON T M, SEABLOOM E W, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness [J]. Nature, 2016, 529: 390 − 393.
[32]

HOYLE R H. Handbook of Structural Equation Modeling [M]. New York: Guilford Press, 2012.
[33] 汪阳东. 竹子秆形生长和变异的研究进展[J]. 竹子研究汇刊, 2001, 20(4): 28 − 32.

WANG Yangdong. Current research on bamboo culm form [J]. J Bamboo Res, 2001, 20(4): 28 − 32.
[34]

CUI Ka, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo [J]. J Proteome Res, 2012, 11(4): 2492 − 2507.
[35] 聂道平, 徐德应, 朱余生. 林分结构、立地条件和经营措施对竹林生产力的影响[J]. 林业科学研究, 1995, 8(5): 564 − 569.

NIE Daoping, XU Deying, ZHU Yusheng. Effect of stand structure, site condition and management method on the productivity of bamboo stands [J]. For Res, 1995, 8(5): 564 − 569.
[36] 陈存及. 毛竹林分密度效应的初步研究[J]. 福建林学院学报, 1992, 12(1): 98 − 104.

CHEN Cunji. Preliminary study on density effect of mao bamboo plantation [J]. J Fujian For Coll, 1992, 12(1): 98 − 104.
[37] 林建忠, 梁文斌, 曹流清, 等. 毛竹人工林生物量结构变化研究[J]. 湖南林业科技, 2016, 43(1): 86 − 92.

LIN Jianzhong, LIANG Wenbin, CAO Liuqing, et al. Biomass structure change of Phyllostachys pubescens plantation [J]. Hunan For Sci Technol, 2016, 43(1): 86 − 92.
[38] 程晓阳, 方乐金, 詹鸿章, 等. 立地条件对毛竹实生林生长发育影响的研究[J]. 世界竹藤通讯, 2004, 2(4): 26 − 27.

CHENG Xiaoyang, FANG Yuejin, ZHAN Hongzhang, et al. Research on the effect of different environment condition to moso bamboo [J]. World Bamboo Rattan, 2004, 2(4): 26 − 27.
[39] 姜航, 高菲, 崔晓阳. 帽儿山次生林区土壤有机碳储量及地形因子的影响[J]. 森林工程, 2015, 31(3): 15 − 20.

JIANG Hang, GAO Fei, CUI Xiaoyang. Soil organic carbon storage and effects of topographical factors of the secondary forest region of Maoer Mountains [J]. For Eng, 2015, 31(3): 15 − 20.
[40]

XU Lin, SHI Yongjun, FANG Huiyun, et al. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems [J]. Sci Total Environ, 2018, 631/632: 619 − 626.