[1] 中国科学院中国植物志编辑委员会. 中国植物志: 第73卷第1册[M]. 北京: 科学出版社, 2004.
[2] 全国城市农贸中心联合会. 中国农产品批发市场年鉴(2017) [M]. 北京: 中国言实出版社, 2017.
[3] 联合国粮农组织. 2018年农产品市场状况: 农产品贸易、气候变化与粮食安全[R]. 罗马: 联合国粮农组织, 2018.
[4]

WEILER E W, ALBRECHT T, GROTH B, et al. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica Jacq. [J]. Phytochemistry, 1993, 32(3): 591 − 600.
[5]

MIZUNO S, SONODA M, TAMURA Y, et al. Chiba Tendril-Less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog [J]. J Plant Res, 2015, 128(6): 941 − 951.
[6]

RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system [J]. Nat Protoc, 2013, 8(11): 2281 − 2308.
[7]

SOUSA-BAENA M S, LOHMANN L G, HERNANDES-LOPES J, et al. The molecular control of tendril development in angiosperms [J]. New Phytol, 2018, 218(3): 944 − 958.
[8]

GERBODE S J, PUZEY J R, MCCORMICK A G, et al. How the cucumber tendril coils and overwinds [J]. Science, 2012, 337(6098): 1087 − 1091.
[9]

BOSS P K, THOMAS M R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation [J]. Nature, 2002, 416(6883): 847 − 850.
[10]

HOFER J, TURNER L, MOREAU C, et al. Tendril-less regulates tendril formation in pea leaves [J]. Plant Cell, 2009, 21(2): 420 − 428.
[11]

AMEHA M, SKIRVIN R M, MITIKU G, et al. In vitro tendril and flower development in cucumber (Cucumis sativus) may be regulated by gibberellins [J]. J Hortic Sci Biotechnol, 1998, 73(2): 159 − 163.
[12]

GERRATH J M, GUTHRIE T B, ZITNAK T A, et al. Development of the axillary bud complex in Echinocystis lobata (Cucurbitaceae): interpreting the cucurbitaceous tendril [J]. Am J Bot, 2008, 95(7): 773 − 781.
[13]

SENSARMA P. Tendrils of the Cucurbitaceae: their morphological nature on anatomical evidences [J]. Proc Nat Inst Sci India, 1955, 21: 162 − 169.
[14] 谭敦炎, 田允温, 林德佩, 等. 西瓜营养器官解剖学研究[J]. 八一农学院学报, 1995, 18(3): 15 − 20.

TAN Dunyan, TIAN Yunwen, LIN Depei, et al. Study on the anatomy of vegetative organs inCitrullus lanatus [J]. J Aug 1st Agric Coll, 1995, 18(3): 15 − 20.
[15] 何金铃, 储何君. 黄瓜茎卷须的形态与解剖结构研究[J]. 安徽农业科学, 2011, 39(18): 10738 − 10739.

HE Jinling, CHU Hejun. Morphological and anatomical structure of cucumber stem tendril [J]. J Anhui Agric Sci, 2011, 39(18): 10738 − 10739.
[16]

WANG Shenhao, YANG Xueyong, XU Mengnan, et al. A rare SNP identified a TCP transcription factor essential for tendril development in cucumber [J]. Mol Plant, 2015, 8(12): 1795 − 1808.
[17]

RHODES B B, ZHANG Xingping, BAIRD W V, et al. A tendrilless mutant in watermelon: phenotype and inheritance [J]. Cucurbit Genet Coop Rep, 1999, 22: 28 − 30.
[18]

KWACK S N. Inheritance of determinate growth habit in Cucurbita moschata Poir. [J]. J Korean Soc Hortic Sci, 1995, 36: 780 − 784.
[19]

OIZUMI T, HIRABAYASHI T, KOTE T, et al. Growth and inheritance characteristics of new melon (Cucumis melo) tendrilless type cultivar ‘Chiba-TL’ [J]. Bull Chiba Prefect Agric Res Cent, 2005, 4: 69 − 75.
[20] 钟建, 胡芳, 董骥驰, 等. 苦瓜植株卷须发生的初始节位及其分叉的遗传分析[J]. 中国蔬菜, 2019(4): 29 − 33.

ZHONG Jian, HU Fang, DONG Jichi, et al. Genetic analysis of initial tendril nodes and tendril-branching in Momordica charantia [J]. China Veg, 2019(4): 29 − 33.
[21]

KOSUGI S, OHASHI Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J, 2002, 30(3): 337 − 348.
[22]

SHEN Junjun, ZHANG Yaqi, GE Danfeng, et al. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber [J]. Proc Natl Acad Sci, 2019, 116(34): 17105 − 17114.
[23]

VIOLA I L, REINHEIMER R, RIPOLL R, et al. Determinants of the DNA binding specificity of class Ⅰ and class Ⅱ TCP transcription factors [J]. J Biol Chem, 2012, 287(1): 347 − 356.
[24]

MARTÍN-TRILLO M, CUBAS P. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 2010, 15(1): 31 − 39.
[25] 许梦楠. TCP基因调控黄瓜卷须发育机理的初探[D]. 北京: 中国农业科学院, 2015.

XU Mengnan. Preliminary Ivestigation of Molecular Mechanism of TCP Gene Regulating the Development Cucumber Tendrils[D]. Beijing: Chinese Academy of Agricultural Science, 2015.
[26]

CHEN Feifan, FU Bingbing, PAN Yupeng, et al. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less mutation (td-1) in cucumber [J]. Theor Appl Genet, 2017, 130(2): 1549 − 1558.
[27]

SERVET C, SILVA N C E, ZHOU Daoxiu. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis [J]. Mol Plant, 2010, 3(4): 670 − 677.
[28]

ZHANG Chaowen, CHEN Feifan, ZHAO Ziyao, et al. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.) [J]. Theor Appl Genet, 2018, 131: 1379 − 1389.
[29]

ZOURELIDOU M, ABSMANNER B, WELLER B, et al. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID [J]. eLife Sci, 2014, 3(3): e02860. doi: 10.7554/eLife.02860.
[30] 庄丹, 丁飞, 吴娇, 等. 6-BA诱导黄瓜CsaIAAs基因的表达研究[J]. 安徽农业大学学报, 2014, 41(2): 260 − 264.

ZHUANG Dan, DING Fei, WU Jiao, et al. Expression of CsaIAAs gene in cucumber induced by 6-BA treatment [J]. J Anhui Agric Univ, 2014, 41(2): 260 − 264.
[31]

LIU Xiaofeng, HAO Ning, LI Huiyuan, et al. PINOID is required for lateral organ morphogenesis and ovule development in cucumber [J]. J Exp Bot, 2019, 70(1): 5715 − 5730.
[32]

LÓPEZ-JUEZ E, BUURMEIJER W F, HEERINGA G H, et al. Response of light-grown wild-type and long hypocotyl mutant cucumber plants to end-of-day far-red light [J]. Photochem Photobiol, 1990, 52(1): 143 − 149.