[1] 郎文婧, 李效顺, 卞正富, 等. 徐州市区土地利用格局变化分析及其空间扩张模拟[J]. 生态与农村环境学报, 2017, 33(7): 592 − 599.

LANG Wenjing, LI Xiaoshun, BIAN Zhengfu, et al. Analysis of land use pattern change and spatial expansion simulation in Xuzhou [J]. J Ecol Rural Environ, 2017, 33(7): 592 − 599.
[2] 李万源, 田佳, 马琴, 等. 基于Google Earth Engine与机器学习的黄土梯田动态监测[J]. 浙江农林大学学报, 2021, 38(4): 730 − 736.

LI Wanyuan, TIAN Jia, MA Qin, et al. Dynamic monitoring of loess terraces based on Google Earth Engine and machine learning [J]. J Zhejiang A&F Univ, 2021, 38(4): 730 − 736.
[3] 谭磊, 赵书河, 罗云霄, 等. 基于对象特征的山东省丘陵地区多时相遥感土地覆被自动分类[J]. 生态学报, 2014, 34(24): 7251 − 7260.

TAN Lei, ZHAO Shuhe, LUO Yunxiao, et al. Automatic classification of land cover based on multi temporal remote sensing in hilly areas of Shandong Province [J]. J Ecol, 2014, 34(24): 7251 − 7260.
[4] 周珂, 杨永清, 张俨娜, 等. 光学遥感影像土地利用分类方法综述[J]. 科学技术与工程, 2021, 21(32): 13603 − 13613.

ZHOU Ke, YANG Yongqing, ZHANG Yanna, et al. Summary of land use classification methods of optical remote sensing images [J]. Sci Technol Eng, 2021, 21(32): 13603 − 13613.
[5] 杨知, 欧文浩, 刘晓燕, 等. 基于LinkNet卷积神经网络的高分辨率遥感影像水体信息提取[J]. 云南大学学报(自然科学版), 2019, 41(5): 932 − 938.

YANG Zhi, OU Wenhao, LIU Xiaoyan, et al. Water information extraction from high resolution remote sensing images based on LinkNet convolutional neural network [J]. J Yunnan Univ Nat Sci Ed, 2019, 41(5): 932 − 938.
[6] 尹华锋, 苏程, 冯存均, 等. 基于样本知识挖掘的高分辨率遥感图像水稻种植信息提取方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 765 − 774.

YIN Huafeng, SU Cheng, FENG Cunjun, et al. Extraction of rice planting information from high-resolution remote sensing images based on sample knowledge mining [J]. J Zhejiang Univ Agric Life Sci Ed, 2018, 44(6): 765 − 774.
[7] 甘甜, 李金平, 李小强, 等. 面向对象的高分辨率遥感影像建筑物震害信息提取[J]. 测绘工程, 2015, 24(4): 11 − 15.

GAN Tian, LI Jinping, LI Xiaoqiang, et al. Object oriented extraction of building seismic damage information from high-resolution remote sensing images [J]. Surv Mapp Eng, 2015, 24(4): 11 − 15.
[8] 宋军伟, 张友静, 李鑫川, 等. 基于GF-1与Landsat-8影像的土地覆盖分类比较[J]. 地理科学进展, 2016, 35(2): 255 − 263.

SONG Junwei, ZHANG Youjing, LI Xinchuan, et al. Comparison of land cover classification based on GF-1 and landsat-8 images [J]. Prog Geogr Sci, 2016, 35(2): 255 − 263.
[9] 张卫春, 刘洪斌, 武伟. 基于随机森林和Sentinel-2影像数据的低山丘陵区土地利用分类——以重庆市江津区李市镇为例[J]. 长江流域资源与环境, 2019, 28(6): 1334 − 1343.

ZHANG Weichun, LIU Hongbin, WU Wei. Land use classification in low mountain and hilly areas based on random forest and Sentinel-2 image data: a case study of Lishi Town, Jiangjin District, Chongqing [J]. Resour Environ Yangtze River Basin, 2019, 28(6): 1334 − 1343.
[10]

ZHU Yuanhui, LIU Kai, LIU Lin, et al. Exploring the potential of World- View-2 Red-Edge Band-Based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms[J/OL]. Remote Sensing, 2017, 9(10): 1060[2022-01-02]. doi: 10.3390/rs9101060.
[11]

KIM H O, YEOM J M. Effect of red-edge and texture features for object-based paddy rice crop classification using Rapid Eye multi-spectral satellite image data [J]. Int J Remote Sensing, 2014, 35(19): 7046 − 7068.
[12]

IMMITZER M, VUOLO F, ATZBERGER C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe [J/OL]. Remote Sensing, 2016, 8(3): 166[2022-01-10]. doi: 10.3390/rs8030166.
[13] 许超, 何静, 何小弟, 等. 基于遥感的土地利用/覆盖信息动态变化监测分析——以扬州市为例[J]. 东北林业大学学报, 2010, 38(4): 128 − 131.

XU Chao, HE Jing, HE Xiaodi, et al. Monitoring and analysis of dynamic change of land use / cover information based on remote sensing: a case study of Yangzhou City [J]. J Northeast For Univ, 2010, 38(4): 128 − 131.
[14] 代晶晶, 吴亚楠, 王登红, 等. 基于面向对象分类的稀土开采区遥感信息提取方法研究[J]. 地球学报, 2018, 39(1): 111 − 118.

DAI Jingjing, WU Yanan, WANG Denghong, et al. Research on remote sensing information extraction method of rare earth mining area based on object-oriented classification [J]. Acta Geo Sin, 2018, 39(1): 111 − 118.
[15] 郭海湘, 杨娟, 杨文霞, 等. 基于改进的ABC模糊分类法煤矿物资分类[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(5): 985 − 989.

GUO Haixiang, YANG Juan, YANG Wenxia, et al. Coal mine material classification based on improved ABC fuzzy classification [J]. J Liaoning Univ Eng Technol Nat Sci Ed, 2010, 29(5): 985 − 989.
[16] 张晓羽, 李凤日, 甄贞, 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016, 44(6): 53 − 57, 74.

ZHANG Xiaoyu, LI fengri, ZHEN Zhen, et al. Forest vegetation classification of Landsat-8 remote sensing images based on random forest model [J]. J Northeast For Univ, 2016, 44(6): 53 − 57, 74.
[17] 郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5): 620 − 630.

ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Multi scale neural network classification of high resolution remote sensing image scenes [J]. J Surv Mapp, 2018, 47(5): 620 − 630.
[18] 张舒婷, 王晓慧, 彭道黎, 等. 黄土高原丘陵沟壑区植被覆盖度变化监测[J]. 浙江农林大学学报, 2020, 37(6): 1045 − 1053.

ZHANG Shuting, WANG Xiaohui, PENG Daoli, et al. Monitoring of vegetation coverage change in Hilly and gully areas of the Loess Plateau [J]. J Zhejiang A&F Univ, 2020, 37(6): 1045 − 1053.
[19] 陈俊松, 施舫, 杜薇, 等. 基于GF-2影像的平原河网区规模化生猪养殖场提取方法研究[J]. 生态与农村环境学报, 2020, 36(11): 1485 − 1494.

CHEN Junsong, SHI Fang, DU Wei, et al. Study on extraction method of large-scale pig farm in plain river network area based on GF-2 image [J]. J Ecol Rural Environ, 2020, 36(11): 1485 − 1494.
[20] 杨子生, 杨诗琴, 杨人懿, 等. 基于利用视角的土地资源分类方法探讨[J]. 资源科学, 2021, 43(11): 2173 − 2191.

YANG Zisheng, YANG Shiqin, YANG Renyi, et al. Discussion on land resources classification method based on utilization perspective [J]. Resour Sci, 2021, 43(11): 2173 − 2191.
[21] 任向宇, 孙文彬, 袁烨. MESMA与面向对象组合的土地利用分类方法[J]. 遥感信息, 2021, 36(1): 69 − 76.

REN Xiangyu, SU Wenbin, YUAN Ye. Land use classification method based on combination of MESMA and object-oriented [J]. Remote Sensing Inf, 2021, 36(1): 69 − 76.
[22] 吴健生, 潘况一, 彭建, 等. 基于QUEST决策树的遥感影像土地利用分类——以云南省丽江市为例[J]. 地理研究, 2012, 31(11): 1973 − 1980.

WU Jiansheng, PAN Kuangyi, PENG Jian, et al. Land use classification of remote sensing images based on quest decision tree: a case study of Lijiang City, Yunnan Province [J]. Geogr Res, 2012, 31(11): 1973 − 1980.
[23]

NOVELLI A, AGUILAR M A, NEMMAOUI A, et al. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain) [J]. Int J Appl Earth Obs Geoinf, 2016, 52: 403 − 411.
[24]

HILLl M J. Vegetation index suites as indicators of vegetation state in grassland and savanna: an analysis with simulated SENTINEL 2 data for a north American transect [J]. Remote Sensing Environ, 2013, 137: 94 − 111.
[25]

GAUTAM V K, GAURAV P K, MURUGAN P, et al. Assessment of surface water dynamics in bangalore using WRI, NDWI, MNDWI, supervised classification and K-T transformation [J]. Aquatic Procedia, 2015, 4: 739 − 746.
[26] 张亚新, 吴志勇, 何海. 苏南丘陵区土地利用遥感分类方法适用性研究[J]. 湖北农业科学, 2021, 60(5): 138 − 143.

ZHNG Yaxin, WU Zhiyong, HE Hai. Study on applicability of remote sensing classification method of land use in hilly area of Southern Jiangsu [J]. Hubei Agric Sci, 2021, 60(5): 138 − 143.