[1] 张瑜, 陈存友, 胡希军. 应用投影寻踪分类技术的森林生态功能评价[J]. 浙江农林大学学报, 2020, 37(2): 243 − 250.

ZHANG Yu, CHEN Cunyou, HU Xijun. Evaluation of forest ecological function based on projection pursuit classification [J]. J Zhejiang A&F Univ, 2020, 37(2): 243 − 250.
[2] 程武学, 杨存建, 周介铭, 等. 森林蓄积量遥感定量估测研究综述[J]. 安徽农业科学, 2009, 37(16): 7746 − 7750.

CHEN Wuxue, YANG Cunjian, ZHOU Jieming, et al. Research summary of forest volume quantitative estimation based on remote sensing technology [J]. J Anhui Agric Sci, 2009, 37(16): 7746 − 7750.
[3] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497 − 508.

FANG Jingyun, LIU Guohua, XU Songling. Biomass and net production of forest vegetation in China [J]. Acta Ecol Sin, 1996, 16(5): 497 − 508.
[4] 郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(4): 459 − 478.

GUO Qinghua, LIU Jin, TAO Shengli, et al. Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling [J]. Chin Sci Bull, 2014, 59(4): 459 − 478.
[5] 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5): 1138 − 1150.

LI Zengyuan, LIU Qingwang, PANG Yong. Review on forest parameters inversion using LiDAR [J]. J Remote Sensing, 2016, 20(5): 1138 − 1150.
[6] 徐文兵, 高飞, 杜华强. 几种测量方法在森林资源调查中的应用与精度分析[J]. 浙江林学院学报, 2009, 26(1): 132 − 136.

XU Wenbing, GAO Fei, DU Huaqiang. Application and precision analysis of several surveying methods in forest resources survey [J]. J Zhejiang For Coll, 2009, 26(1): 132 − 136.
[7] 李春干, 代华兵. 中国森林资源调查: 历史, 现状与趋势[J]. 世界林业研究, 2021, 34(6): 72 − 80.

LI Chungan, DAI Huabing. Forest management inventory in china: history, current status and trend [J]. World For Res, 2021, 34(6): 72 − 80.
[8]

PAWE H, PIOTR T, PIOTR W. Area-based estimation of growing stock volume in Scots pine stands using ALS and airborne image-based point clouds [J]. Forestry, 2017(5): 686 − 696.
[9]

CHIRICI G, GIANNETTI F, MCROBERTS R E, et al. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data[J/OL]. Int J Appl Earth Observation Geoinf, 2019, 84: 101959[2021-12-30]. doi: 10.1016/j.jag.2019.101959.
[10] 陈松, 孙华, 吴童, 等. 基于Sentinel-2与机载激光雷达数据的误差变量联立方程组森林蓄积量反演研究[J]. 中南林业科技大学学报, 2020, 40(12): 44 − 53.

CHEN Song, SUN Hua, WU Tong, et al. Study on the forest volume inversion based on the simultaneous equations of error variables of Sentinel-2 and airborne Lidar data [J]. J Cent South Univ For Technol, 2020, 40(12): 44 − 53.
[11] 曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2): 31 − 38.

ZENG Weisheng, SUN Xiangnan, WANG Liuru, et al. Development of forest stand volume models based on airborne laser scanning data [J]. Sci Silv Sin, 2021, 57(2): 31 − 38.
[12] 黄道年, 廖泽钊. 广西桉树二元材积表编制的研究[J]. 广西农学院学报, 1986(1): 53 − 60.

HUANG Daonian, LIAO Zezhao. Study on compiling binary volume table of Eucalyptus in Guangxi [J]. J Guangxi Agric Coll, 1986(1): 53 − 60.
[13] 肖武, 陈佳乐, 笪宏志, 等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报, 2018, 49(8): 169 − 180.

XIAO Wu, CHEN Jiale, DA Hongzhi, et al. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images [J]. Trans Chin Soc Agric Mach, 2018, 49(8): 169 − 180.
[14] 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14): 103 − 109.

YU Lei, HONG Yongsheng, GENG Lei, et al. Hyperspectral estimation of soil organic matter content based on partial least square regression [J]. Trans Chin Soc Agric Eng, 2015, 31(14): 103 − 109.
[15] 刘琼阁, 彭道黎, 涂云燕. 基于偏最小二乘回归的森林蓄积量遥感估测[J]. 中南林业科技大学学报, 2014, 34(2): 81 − 84,132.

LIU Qiongge, PENG Daoli, TU Yunya. Estimation of forest stock volume based on partial least squares regression [J]. J Cent South Univ For Technol, 2014, 34(2): 81 − 84,132.
[16]

VAPNIK V, IZMAILOV R. Intelligent learning: similarity control and knowledge transfer [J/OL]. Ann Math Artif Intell, 2017(1/2)[2022-01-01]. doi: 10.1007/978-3-319-17091-6_1.
[17]

BAO Yukun, LUI Zhitao. A fast grid search method in support vector regression forecasting time series[R]// [s.l] Intelligent Data Engineering and Automated Learning Vol 4244. Berlin Heidelberg: Springer, 2006: 504 − 511.
[18] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32 − 38.

FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of random forest method research [J]. Stat Inf Forum, 2011, 26(3): 32 − 38.
[19]

MOLINARO A M, SIMON R, PFEIFFER R M. Prediction error estimation: a comparison of resampling methods[J/OL]. Bioinformatics, 2005, 21(15): 3301-7[2021-012-31]. doi: 10.1093/bioinformatics/bti499.
[20] 肖越. 基于多源遥感数据的旺业甸林场森林蓄积量估测方法研究[D]. 长沙: 中南林业科技大学, 2021.

XIAO Yue. Research on Estimation Method of Forest Volume of Wangyedian Forest Farm based on Multi-Source Remote Sensing Data[D]. Changsha: Central South University of Forestry & Technology, 2021.
[21] 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020, 33(4): 59 − 66.

ZHAO Xun, YUE Cairong, LI Chungan, et al. Estimation of forest stand mean height based on airborne lidar point cloud data [J]. For Res, 2020, 33(4): 59 − 66.
[22] 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2): 186 − 192.

ZHOU Rong, ZHAO Tianzhong, WU Fayun. Aboveground biomass model based on landsat 8 remote sensing images [J]. J Northwest For Univ, 2022, 37(2): 186 − 192.
[23] 袁钰娜, 彭道黎, 王威, 等. 利用机载激光雷达技术估测东北林区典型针叶林的蓄积量[J]. 应用生态学报, 2021, 32(3): 836 − 844.

YUAN Yuna, PENG Daoli, WANG Wei, et al. Estimating standing stocks of the typical conifer stands in Northeast China based on airborne LiDAR data [J]. Chin J Appl Ecol, 2021, 32(3): 836 − 844.
[24] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2 − 10.

DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines [J]. J Univ Electron Sci Technol China, 2011, 40(1): 2 − 10.
[25] 孙忠秋, 高金萍, 吴发云, 等. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测[J]. 林业科学, 2021, 57(8): 68 − 81.

SUN Zhongqiu, GAO Jinping, WU Fayun, et al. Estimating forest stock volume via small-footprint LiDAR point cloud data and random forest algorithm [J]. Sci Silv Sin, 2021, 57(8): 68 − 81.