[1] FERREIRA G N M, DA-SILVA A, TOME B. Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance [J]. Trends Biotechnol, 2009, 27(12): 689 − 697.
[2] SAUERBREY G Z. Use of quartz vibrator for weighing thin films on a microbalance [J]. J Physik, 1959, 155(2): 206 − 212.
[3] ENCARNACAO J M, ROSA L, RODRIGUES R, et al. Piezoelectric biosensors for biorecognition analysis: application to the kinetic study of HIV-1 Vif protein binding to recombinant antibodies [J]. J Biotechnol, 2007, 132(2): 142 − 148.
[4] KANAZAWA K K, GORDON J G. The oscillation frequency of a quartz resonator in contact with liquid [J]. Anal Chim Acta, 1985, 175: 99 − 105.
[5] MARTIN S J, GRANSTAFF V E, FRYE G C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading [J]. Anal Chem, 1991, 63(20): 2272 − 2281.
[6] VOINOVA M V, RODAHL M, JONSON M, et al. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach [J]. Phys Scr, 1998, 59(5): 391 − 396.
[7] CHEN J Y, PENN L S, XI J. Quartz crystal microbalance: sensing cell-substrate adhesion and beyond [J]. Biosens Bioelectron, 2018, 99: 593 − 602.
[8] SAITAKIS M, GIZELI E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions [J]. Cell Mol Life Sci, 2012, 69(3): 357 − 371.
[9] SKLADAL P. Piezoelectric biosensors [J]. Trends Anal Chem, 2016, 79: 127 − 133.
[10] GIBBS M J, BIELA A, KRAUSE S. α-amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor [J]. Biosens Bioelectron, 2015, 67: 540 − 545.
[11] PEI Z C, SAINT-GUIRONS J, KACK C, et al. Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach [J]. Biosens Bioelectron, 2012, 35(1): 576 − 581.
[12] AARON W, FRANK V, YUKI S. Probing biomechanical properties with a centrifugal force quartz crystal microbalance [J]. Nat Commun, 2014, 5: 1 − 8.
[13] EFREMOV V, KILLARD A J, BYRNE B, et al. The modelling of blood coagulation using the quartz crystal microbalance [J]. J Biomech, 2013, 46(3): 437 − 442.
[14] EFREMOV V, LAKSHMANAN R S, BYRNE B, et al. Simple and convenient measurement of RBC deformability using QCM integrated with a novel model of cell viscoelasticity [J]. Sens Actuators B Chem, 2018, 266: 472 − 476.
[15] ZHU Xiaoqian, LI Jiao, HE Hanping, et al. Application of nanomaterials in the bioanalytical detection of disease-related genes [J]. Biosens Bioelectron, 2015, 74: 113 − 133.
[16] TAKAKUSAGI Y, TAKAKUSAGI K, SUGAWARA F, et al. Using the QCM biosensor-based T7 phage display combined with bioinformatics analysis for target identification of bioactive small molecule[M]//FAUSER F, JONIKAS M. Plant Chemical Genomics. Methods in Molecular Biology, Vol 1795. New York: Humana Press, 2018.
[17] DOLATSHAHI-PIROUZ A, JENSEN T H L, KOLIND K, et al. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces [J]. Colloids Surf B Biointerfaces, 2011, 84(1): 18 − 25.
[18] ALEXANDER T E, LOZEAU L D, CAMESANO T A. QCM-D characterization of time-dependence of bacterial adhesion [J]. Cell Surf, 2019, 5: 1 − 9.
[19] ZHOU Bin, LU Xinxin, HAO Yan, et al. Real-time monitoring of the regulatory volume decrease of cancer cells: a model for the evaluation of cell migration [J]. Anal Chem, 2019, 91(13): 8078 − 8084.
[20] FUNARI R, VENTURA B D, CARRIERI R, et al. Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique [J]. Biosens Bioelectron, 2015, 67: 224 − 229.
[21] KUROSAWA S, PARK J W, AIZAWA H, et al. Quartz crystal microbalance immunosensors for environmental monitoring [J]. Biosens Bioelectron, 2006, 22(4): 473 − 481.
[22] DIRRI F, PALOMBA E, LONGOBARDO A, et al. A review of quartz crystal microbalances for space applications [J]. Sens Actuators A Phys, 2018, 287: 48 − 75.
[23] YAN Ying, LU Dandan, ZHOU Hao, et al. Polyaniline-modified quartz crystal microbalance sensor for detection of formic acid gas [J]. Water Air Soil Pollut, 2012, 223(3): 1275 − 1280.
[24] 谈旭, 金永灿. QCM-D应用于纤维素酶水解分析中的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 155 − 162.

TAN XU, JIN Yongcan. Advances in the application of QCM-D in cellulase hydrolysis analysis [J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(6): 155 − 162.
[25]

AKANBI M O, HERNANDEZ L M, MOBAROK M H, et al. QCM-D and NanoTweezer measurements to characterize the effect of soil cellulase on the deposition of PEG-coated TiO2 nanoparticles in model subsurface environments [J]. Environm Sci Nano, 2018, 5(9): 2172 − 2183.
[26]

OZTURK S, KOSEMEN A, KOSEMEN Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors [J]. Sens Actuators B Chem, 2016, 222: 280 − 289.
[27]

KABIR K M M, JAMPAIAH D, KANDJANI A E, et al. Cold vapor integrated quartz crystal microbalance (CV-QCM) based detection of mercury ions with gold nanostructures [J]. Sens Actuators B Chem, 2019, 290: 453 − 458.
[28]

CHEN Qian, XU Shengming, LIU Qingxia, et al. QCM-D study of nanoparticle interactions [J]. Adv Colloid Interface Sci, 2016, 233: 94 − 114.
[29]

JOSEFSSON P, HENRIKSSON G, WAGBERG L. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases [J]. Biomacromolecules, 2008, 9(1): 249 − 254.
[30]

SUCHY M, LINDER M B, TAMMELIN T, et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring [J]. Langmuir, 2011, 27(14): 8819 − 8828.
[31]

SAARINEN T, ORELMA H, GRONQVIST S, et al. Adsorption of different laccases on cellulose and lignin surfaces [J]. Bioresources, 2009, 4(1): 94 − 110.
[32]

ZHANG P Q, CHEN M M, DUAN Y H, et al. Real-time adsorption of exo- and endoglucanases on cellulose: effect of pH, temperature, and inhibitors [J]. Langmuir, 2018, 34(45): 13514 − 13522.
[33]

MAURER S A, BEDBROOK C N, RADKE C J. Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate [J]. Langmuir, 2012, 28(41): 14598 − 14608.
[34]

KUMAGAI A, LEE S H, ENDO T. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study [J]. Biomacromolecules, 2013, 14(7): 2420 − 2426.
[35]

LAI Chenhuan, YANG Bo, LIN Zihe, et al. New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation [J]. Biotechnol Biofuels, 2019, 12. doi: 10.1186/s13068-019-1402-2.
[36] 魏晓妍, 王刚, 李岸峰, 等. 电化学石英晶体微天平的应用[J]. 化学进展, 2018, 30(11): 1701 − 1721.

WEI Xiaoyan, WANG Gang, LI Anfeng, et al. Application of electrochemical quartz crystal microbalance [J]. Prog Chem, 2018, 30(11): 1701 − 1721.
[37]

ASAI N, SHIMIZU T, SHINGUBARA S, et al. Fabrication of highly sensitive QCM sensor using AAO nanoholes and its application in biosensing [J]. Sens Actuators B Chem, 2018, 276: 534 − 539.
[38]

DENIZ M, DELIGOZ H. Flexible self-assembled polyelectrolyte thin films based on conjugated polymer: Quartz Cristal Microbalance Dissipation (QCM-D) and cyclic voltammetry analysis [J]. Colloids Surfaces A Physicochem Eng Aspects, 2019, 563: 206 − 216.
[39]

BEYKAL B, HERZBERG M, OREN Y, et al. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes [J]. J Colloid Interface Sci, 2015, 460: 321 − 328.
[40]

RALSTON K D, THOMAS S, WILLIAMS G, et al. An electrochemical quartz crystal microbalance study of magnesium dissolution [J]. Appl Surface Sci, 2016, 360: 342 − 348.