[1] 方文培. 中国植物志: 第52卷第2分册[M]. 北京: 科学出版社, 1983.

FANG Wenpei. Flora of China: Vol. 52, No. 2[M]. Beijing: Science Press, 1983.
[2]

LOURTEIG A. Legitimacy of Heimia myrtifolia Chamisso et Schlechtendal (Lythraceae) [J]. Taxon, 1989, 38(2): 279 − 280.
[3]

CLEMENS S. Frequent oligolecty characterizing a diverse bee-plant community in a xerophytic bushland of subtropical Brazil [J]. Studies on Neotropical Fauna and Environment, 1998, 33(1): 46 − 59.
[4]

AYOUB N, SINGAB A N, ELNAGGAR M, et al. Investigation of phenolic leaf extract of Heimia myrtifolia (Lythraceae): pharmacological properties (stimulation of mineralization of Saos-2 osteosarcoma cells) and identification of polyphenols [J]. Drug Discovery Today, 2010, 4(5): 341 − 348.
[5] 林启芳, 刘婷婷, 刘洁茹, 等. 紫薇属与黄薇属植物花瓣类黄酮组成及含量分析[J]. 园艺学报, 2021, 48(10): 1956 − 1968.

LIN Qifang, LIU Tingting, LIU Jieru, et al. Flavonoids composition and content in petals of Lagerstroemia and Heimia species and cultivars [J]. Acta Horticulturae Sinica, 2021, 48(10): 1956 − 1968.
[6] 郑钢, 顾翠花, 王杰, 等. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650 − 1659.

ZHENG Gang, GU Cuihua, WANG Jie, et al. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham. et Schlechtend [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650 − 1659.
[7] 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5): 894 − 901.

GU Fan, JI Mengcheng, GU Cuihua, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia [J]. Journal of Zhejiang A&F University, 2019, 36(5): 894 − 901.
[8] 徐涛, 张柯岩, 顾翠花. 盐胁迫对黄薇若干生理生化指标的影响[J/OL]. 分子植物育种, 2022[2022-04-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1310.008.html.

XU Tao, ZHANG Keyan, GU Cuihua. Effects of salt stress on several physiological and biochemical indexes of Heimia myrtifolia [J/OL]. Molecular Plant Breeding, 2022-04-26[2022-04-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1310.008.html.
[9]

GU Cuihua, DONG Bin, XU Liang, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales [J/OL]. Molecules, 2018, 23(4): 846[2022-04-30]. doi:10.3390/molecules23040846.
[10]

WANG Hao, CAI Qizhong, LIU Lu, et al. Reference gene screening for real-time quantitative PCR in Polygonum multiflorum [J]. China Journal of Chinese Materia Medica, 2021, 46: 80 − 85.
[11]

LUO Meng, GAO Zhen, LI Hui, et al. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine [J/OL]. Scientific Reports, 2018, 8(1): 4444[2022-04-30]. doi:10.1038/s41598-018-22743-6.
[12]

FU Jianxin, WANG Yi, HUANG He, et al. Reference gene selection for RT-qPCR analysis of Chrysanthemum lavandulifolium during its flowering stages [J]. Molecular Breeding, 2013, 31(1): 205 − 215.
[13]

SUN Huapeng, LI Fang, RUAN Qinmei, et al. Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. [J]. Plant Physiology and Biochemistry, 2016, 108: 286 − 294.
[14]

KUMAR D, DAS P K, SARMAH B K. Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition [J]. Journal of Applied Genetics, 2018, 59(4): 419 − 430.
[15]

VANDESOMPELE J, PRETER K D, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J/OL]. Genome Biology, 2002, 3(7): 0034.1[2022-04-28]. doi:10.1186/gb-2002-3-7-research0034.
[16]

ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Research, 2004, 64(15): 5245 − 5250.
[17]

PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnology Letters, 2004, 26(6): 509 − 515.
[18] 崔运启, 朱再标, 郭巧生, 等. 垂盆草实时荧光定量PCR内参基因筛选[J/OL]. 分子植物育种, 2022-03-18[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.S.20220317.1731.024.html.

CUI Yunqi, ZHU Zaibiao, GUO Qiaosheng, et al. Screening of internal reference genes by quantitative real-time PCR in Sedum sarmentosum [J/OL]. Molecular Plant Breeding, 2022-03-18[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.S.20220317.1731.024.html.
[19] 干思宸, 师悦, 梁立军. 山麦冬果实花青素生物合成中内参基因的筛选与验证[J]. 浙江农林大学学报, 2022, 39(2): 307 − 317.

GAN Sichen, SHI Yue, LIANG Lijun. Selection and validation of reference genes for anthocyanin biosynthesis in Liriope spicata fruits [J]. Journal of Zhejiang A&F University, 2022, 39(2): 307 − 317.
[20] 李桥, 王淑安, 王鹏, 等. 铁线莲属萼片荧光定量PCR内参基因的筛选和评价[J/OL]. 分子植物育种, 2022-04-13[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.s.20220410.2211.014.html.

LI Qiao, WANG Shu’an, WANG Peng, et al. Selection and evaluation of reference genes for quantitative real-time PCR in sepals of different Clematis Varieties[J/OL]. Molecular Plant Breeding, 2022-04-13[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.s.20220410.2211.014.html.
[21] 章丽珍, 韩晓云, 吴菁华, 等. 甜瓜实时荧光定量PCR分析中内参基因的筛选[J]. 福建农业学报, 2020, 35(11): 1179 − 1187.

ZHANG Lizhen, HAN Xiaoyun, WU Jinghua, et al. Reference gene selection for RT-qPCR analysis on Cucumis melo [J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1179 − 1187.
[22] 杨婷, 薛珍珍, 李娜, 等. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 2021, 48(11): 2251 − 2261.

YANG Ting, XUE Zhenzhen, LI Na, et al. Reference genes selection and validation in Begonia masoniana leaves of different developmental stages [J]. Acta Horticulturae Sinica, 2021, 48(11): 2251 − 2261.
[23] 钱猛, 杨娜, 朱昌华, 等. 绿豆实时荧光定量PCR内参基因的筛选与验证[J]. 植物生理学报, 2021, 57(11): 2203 − 2212.

QIAN Meng, YANG Na, ZHU Changhua, et al. Selection and validation of reference genes for real-time fluorescence quantitative PCR in mung beans [J]. Plant Physiology Journal, 2021, 57(11): 2203 − 2212.
[24] 奚航献. 铁皮石斛葡甘聚糖生物合成途径关键催化酶类纤维素合成酶CslD的挖掘与功能分析[D]. 杭州: 浙江农林大学, 2021.

XI Hangxian. Discovery and Functional Analysis of Cellulose Synthase D, a Key Catalytic Enzyme in Glucomannan Biosynthesis Pathway in Dendrobium candidum [D]. Hangzhou: Zhejiang A&F University, 2021.
[25] 朱冉冉, 吉雪花, 张中荣, 等. 辣椒超氧化物歧化酶基因家族的生物信息学分析[J]. 石河子大学学报(自然科学版), 2020, 38(6): 712 − 717.

ZHU Ranran, JI Xuehua, ZHANG Zhongrong, et al. Bioinformatics analysis of Capsicum superoxide dismutase gene family [J]. Journal of Shihezi University (Natural Science), 2020, 38(6): 712 − 717.
[26]

ZHAO Zeying, ZHOU Hanwen, NIE Zhongnan, et al. Appropriate reference genes for RT-qPCR normalization in various organs of Anemone flaccida Fr. Schmidt at different growing stages [J/OL]. Genes, 2021, 12(3): 459[2022-04-25]. doi:10.3390/genes12030459.
[27]

TONG Zhaoguo, GAO Zhihong, WANG Fei, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR [J/OL]. BMC Molecular Biology, 2009, 10(1): 71[2022-04-25]. doi:10.1186/1471-2199-10-71.
[28]

WARD D S, JUTTA D W, ROSWITHA W, et al. Reference gene validation for RT-qPCR, a note on different available software packages [J/OL]. PLoS One, 2015, 10(3): e0122515[2022-04-25]. doi: 10.1371/journal.pone.0122515.
[29] 张海洋, 付娆, 李茹霞, 等. 菠菜非生物胁迫下实时荧光定量PCR分析中内参基因的选择[J]. 山东农业科学, 2020, 52(5): 21 − 25.

ZHANG Haiyang, FU Rao, LI Ruxia, et al. Reference gene selection for real-time quantitative PCR in spinach treated with abiotic stresses [J]. Shandong Agricultural Sciences, 2020, 52(5): 21 − 25.
[30] 王蕊, 胡绍旺, 刘金凤, 等. 大豆不同发育时期及非生物胁迫下实时荧光定量PCR内参基因筛选[J/OL]. 吉林农业大学学报, 2021-06-03[2022-04-30]. https://kns.cnki.net/kcms/detail/22.1100.S.20210602.1200.006.html.

WANG Rui, HU Shaowang, LIU Jinfeng, et al. Screening of reference genes under abiotic stress and different development stages of soybean by real-time fluorescence quantitative PCR [J/OL]. Journal of Jilin Agricultural University, 2021-06-03[2022-04-30]. https://kns.cnki.net/kcms/detail/22.1100.S.20210602.1200.006.html.
[31]

HE Meijing, CUI Shunli, YANG Xinlei, et al. Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR [J]. Electronic Journal of Biotechnology, 2017, 28: 76 − 86.
[32] 杨坤, 黄超, 卢山, 等. 铜胁迫下紫鸭跖草根组织实时定量PCR内参基因的选择[J]. 植物生理学报, 2021, 57(1): 195 − 204.

YANG Kun, HUANG Chao, LU Shan, et al. Reference gene selection for quantitative real-time PCR in purple setcreasea (Setcreasea purpurea) root tissue under copper stress [J]. Plant Physiology Journal, 2021, 57(1): 195 − 204.
[33]

TANG Xun, ZHANG Ning, SI Huaijun, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress [J/OL]. Plant Methods, 2017, 13(1): 85[2022-04-30]. doi:10.1186/s13007-017-0238-7.