Volume 35 Issue 6
Nov.  2018
Turn off MathJax
Article Contents

AI Juanjuan, HOU Lingyu, SHAO Guodong, LI Zhichao, LU Lihua, LI Zhaoying, SUN Qiwu. Matrix formula with forest waste and their effects on Tectona grandis growth[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1027-1037. doi: 10.11833/j.issn.2095-0756.2018.06.005
Citation: AI Juanjuan, HOU Lingyu, SHAO Guodong, LI Zhichao, LU Lihua, LI Zhaoying, SUN Qiwu. Matrix formula with forest waste and their effects on Tectona grandis growth[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1027-1037. doi: 10.11833/j.issn.2095-0756.2018.06.005

Matrix formula with forest waste and their effects on Tectona grandis growth

doi: 10.11833/j.issn.2095-0756.2018.06.005
  • Received Date: 2017-11-05
  • Rev Recd Date: 2018-04-19
  • Publish Date: 2018-12-20
  • To promote the utilization of forest wastes and reduce the exploitation of peat, a seedling test on Tectona grandis was conducted with the main raw materials of forest wastes as the seedling substrate. Taking wood fiber (WB), sawdust (SD), coir dust (CD), and retted bark (RB) as main raw materials and peat (PT), yellow soil (YS), perlite (PL), vermiculite (VC), and burned soil (BS) as auxiliary materials, 16 different matrix formulations were mixed with different volume ratios. The control (T1) formula was YS:SD:BS=6:3:1. Physicochemical properties of the substrates and their effects on the growth and physiological status of T. grandis seedlings were studied using the subjection function method to evaluate the effect of each substrate on seedling growth. Then, the best suitable matrix formulation for seedling growth was screened out. Results showed significant differences (P < 0.05) between indicators of different substrates. Of the sixteen kinds of forestry waste formulation substrates, bulk density was 0.1-0.8 g·cm-3, total porosity was 35.87%-63.35%, and capillary porosity was 24.78%-53.05%; pH was 5.29-7.43. Compared to the control, available N, available P, available K, EC, and aeration porosity were higher or significantly higher (P < 0.05); bulk density was significantly lower (P < 0.05). Differences among the indexes included T10, T11 and T12. For height growth and increment of soil diameter in the formulation matrix, main root length, the number of lateral roots per plant, the leaf area per plant, leaf stem and leaf dry weight, root dry weight, seedling quality index, and total chlorophyll were significantly higher (P < 0.05) than the control group. The comprehensive evaluation results showed that the comprehensive evaluation indexes of T10, T11 and T12 are 0.42, 0.42, and 0.56 were significantly (P < 0.05) higher than those of the control group (0.22). Thus, to reduce the use of peat, T10 and T11 were recommended as the best seedling substrates for T. grandis.
  • [1] YANG Wangting, SHAO Xiangjun, ZHOU Jumin, GUI Renyi.  Effects of different dissolved oxygen concentration on growth, physiology and biochemistry of hydroponic Phyllostachys violascens seedlings . Journal of Zhejiang A&F University, 2021, 38(2): 280-288. doi: 10.11833/j.issn.2095-0756.20200286
    [2] WANG Xiao, WANG Yinglin, WEI Xiaoli, WU Gaoyin.  Growth, physiology and nutrient accumulation of Phoebe bournei seedlings under different amount of exponential nitrogen fertilization . Journal of Zhejiang A&F University, 2020, 37(3): 514-521. doi: 10.11833/j.issn.2095-0756.20190259
    [3] LAI Wenhao, XI Qin, WU Hailong, CUI Youyuan, ZHAO Tingning.  Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia . Journal of Zhejiang A&F University, 2018, 35(2): 331-339. doi: 10.11833/j.issn.2095-0756.2018.02.018
    [4] TANG Jixin, LEI Yuancai, ZENG Ji, LI Zhongguo, LI Wuzhi, NONG Liangshu, ZHAO Zong.  Tree density and growth of Mytilaria laosensis stands with natural seed regeneration on clearcut land . Journal of Zhejiang A&F University, 2018, 35(3): 459-466. doi: 10.11833/j.issn.2095-0756.2018.03.009
    [5] LI Jun, WANG Xiuhua, CHU Xiuli, ZHANG Dongbei, ZHOU Zhichun.  Substrate proportion for growth and N/P absorption in two-year-old container seedlings of three precious tree species . Journal of Zhejiang A&F University, 2017, 34(6): 1044-1050. doi: 10.11833/j.issn.2095-0756.2017.06.011
    [6] JIANG Zhibiao, CHEN Shuanglin, GUO Ziwu, YANG Qingping, ZHU Ling, LI Mingliang.  Leaf morphology and C, N, and P stoichiometry of Phyllostachys prominens under soil cover with rhizome controlling cultivation . Journal of Zhejiang A&F University, 2017, 34(6): 1155-1160. doi: 10.11833/j.issn.2095-0756.2017.06.025
    [7] LIU Huan, WANG Chaoqi, WU Jiasen, GUO Lianhua.  Growth and N accumulation in seedlings of Cunninghamia lanceolata clones with N exponential fertilization . Journal of Zhejiang A&F University, 2017, 34(3): 459-464. doi: 10.11833/j.issn.2095-0756.2017.03.011
    [8] YIN Fangfang, LIN Xiazhen, NING Mengya, HU Lipeng.  Chemical reagents with Cyclobalanopsis glauca container seedlings . Journal of Zhejiang A&F University, 2015, 32(2): 244-250. doi: 10.11833/j.issn.2095-0756.2015.02.011
    [9] CHEN Wen, WANG Jing, YE Zhengqian, FEI Xinghai, SUN Zhen, WANG Guoming.  Responses of Cinnamomum japonicum var. chenii growth and nutrient uptake to fertilization . Journal of Zhejiang A&F University, 2014, 31(3): 358-365. doi: 10.11833/j.issn.2095-0756.2014.03.005
    [10] WU Guo-xin, WANG Ling-hui, LIANG Hui-ping, LI Yuan-fa, HAO Jian.  Fertilizer treatments for growth and physiology of Dalbergia odorifera seedlings . Journal of Zhejiang A&F University, 2012, 29(2): 296-300. doi: 10.11833/j.issn.2095-0756.2012.02.021
    [11] ZHAO Jian-hua, YE Li-qin, AN Wei, ZHANG Kun, WANG Ya-jun, SHI Zhi-gang.  Standards for sorting and growth patterns of Lycium barbarum seedlings . Journal of Zhejiang A&F University, 2011, 28(3): 450-454. doi: 10.11833/j.issn.2095-0756.2011.03.016
    [12] SUN Yu, LI Guo-lei, LIU Yong, MA Lü-yi, ZHU Yan, JIANG Chang-ji, LIU Fu-sen, LI Xue-lian.  Growth and P-uptake for Larix olgensis seedlings with phosphorus top-dressed using fertigation . Journal of Zhejiang A&F University, 2011, 28(2): 219-226. doi: 10.11833/j.issn.2095-0756.2011.02.008
    [13] LI Yong-jin, DING Gui-jie.  Separation,purification,and identification of endogenous inhibitory substances in Pinus massoniana cuttings . Journal of Zhejiang A&F University, 2010, 27(4): 507-512. doi: 10.11833/j.issn.2095-0756.2010.04.005
    [14] LIU Wei, ZHOU Shan-song, ZHANG Xian-xiang, FENG Jian-guo, WU Xue-mei.  Containerized versus bare-root seedlings of Schima superba for forest regeneration . Journal of Zhejiang A&F University, 2009, 26(6): 829-834.
    [15] CAI Xia, YE Xu-ying, XU Hong-xia, FANG Wen-fei.  Application of theory of “similar nature forest”in building landscape forests . Journal of Zhejiang A&F University, 2008, 25(5): 584-590.
    [16] WU Jia-sheng, YING Ye-qing, CHENG Xiao-jian, LI Zhang-ju.  Comparison of four intercropped tree-shrub (Adinandra millettii) comprehensive management models . Journal of Zhejiang A&F University, 2007, 24(5): 555-558.
    [17] SHI Fu-qiang, ZHOU Feng-lin.  Container seedling classification of Ormosia yunnanensis . Journal of Zhejiang A&F University, 2006, 23(6): 651-655.
    [18] YANG Bin, ZHAO Wen-shu, JIANG Yuan-biao, WANG Fa-zhong.  Seedling selection and fertilization effect of Pinus kesiya var .langbianensis plantation . Journal of Zhejiang A&F University, 2005, 22(4): 396-399.
    [19] ZHOU Yong-xue, FAN Jun-feng, YANG Pei-hua, GAO Jian-he, LIU Yong-hong.  Comparative studies on growth and biomass of one-year-old seedlings of Pinus nigra var. austriaca and Pinus tabuleaformis . Journal of Zhejiang A&F University, 2003, 20(4): 438-441.
    [20] YU Shu-quan, FU Da-rong, LI Cui-huan, LIU Jun, LIU Da-jian.  Nursery term testing of clones of Populus kangdingensis . Journal of Zhejiang A&F University, 2003, 20(3): 245-248.
  • [1]
    WEI Xing, LI Guiyu, LÜ Lin. Water and nutrient preservation of agri-forest residues used as nursery matrix[J]. Sci Silv Sin, 2015, 51(12):26-34.
    [2]
    DAI Xiaohong, SUN Weisheng, FAN Quan, et al. Physicochemical property of mixed substrates with agricultural and forestry wastes and comprehensive evaluation of their effect on growth of Camellia oleifera seedlings[J]. J Plant Resour Environ, 2016, 25(1):54-61.
    [3]
    TIAN Yun, WANG Haiyan, SUN Xiangyang, et al. The progress and prospects of agricultural and forest residue substrate[J]. Chin J Soil Sci, 2011, 42(2):497-502.
    [4]
    WANG Xuyan, LIN Xiazhen, LI Lin, et al. Physical and chemical properties of several kinds of agriculture and forestry waste composite matrix and their effect on container seedling of Phoebe chekiangensis[J]. J Zhejiang A&F Univ, 2013, 30(5):674-680.
    [5]
    LI Yan, SUN Xiangyang, GONG Xiaoqiang, et al. Substitution of vermicompost for peat as Brassica oleracea L. and Cucurbita pepo L. seedling substrates[J]. J Jilin Agric Univ, 2015, 37(5):549-554.
    [6]
    CAO Jing, ZHU Chuanjun, ZHOU Lan, et al. Effects of cow dung and green waste composts used as substitutes of peat matrix on growth of Robinia pseudoacacia seedlings[J]. J Henan Agric Sci, 2017, 46(2):100-104.
    [7]
    SHAO Lingzhi, FU Yuming, FU Wenting, et al. Effects of aqueous extract of soil like substrate made from three different materials on seed germination and seedling growth of rice[J]. Acta Astronaut, 2014, 96(4):83-88.
    [8]
    LI Pingping, ZHU Yongli. Development and application of plant growing substrates made of agricultural and forestry wastes:a review[J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(5):161-168.
    [9]
    DOTANIYA M L, MEENA V D, MANJU L, et al. Teak plantation-a potential source of income generation[J]. Pop Govern, 2013, 1(3):61-63.
    [11]
    MA Huaming, LIANG Kunnan, ZHOU Zaizhi. Research and development of teak in China[J]. For Res, 2003, 16(6):768-773.
    [12]
    BAI Linghai, MO Huihua, LIANG Kunnan, et al. Selection experiment and analysis of nursery substrate in transplanting the tissue culture seedlings of Tectona grandis[J]. Seed, 2013, 32(9):10-12.
    [13]
    HUANG Guihua, LIANG Kunnan, ZHOU Zaizhi, et al. Chilling physiological estimate and early selection of Tectona grandis L. f. clones at seedling stage[J]. J Northeast For Univ, 2015, 43(9):12-17.
    [14]
    HUANG Guihua, LIANG Kunnan, ZHOU Zaizhi, et al. Transplanting effect of Tectona grandis tube seedling with light media[J]. J Cent South Univ For Technol, 2014, 34(1):32-36.
    [15]
    TIAN Yun, SUN Xiangyang, Li Suyan, et al. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata[J]. Sci Hortic, 2012, 143:15-18.
    [16]
    CHENG Fei, SUN Zhaohui, ZHAO Yuguo, et al. Analysis of physical and chemical properties of reed residue substrate[J]. J Nanjing Agric Univ, 2001, 24(3):19-22.
    [20]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254.
    [21]
    ZHANG Qiang, SUN Xiangyang, REN Zhongxiu, et al. Effect evaluation of garden waste compost used as floriculture substrate[J]. J Cent South Univ For Technol, 2011, 31(9):7-13.
    [22]
    WANG Sujuan. The Effect of Substrate and Fertilization on the Growth of Cyclobalanopsis glauca and Cyclobalanopsis gliva Container Seedlings[D]. Hangzhou: Zhejiang A&F University, 2012.
    [23]
    LI Jing, YU Jihua, XIE Jianming, et al. Effects of decomposed cow dung content in seedling substrates on quality of pepper plug seedling[J]. J Gansu Agric Univ, 2012, 47(4):38-42.
    [25]
    HUANG Songdian, LIANG Ji, LIANG Xiaochun, et al. Effect of different nursery substrates on container seedlings growth of Parashorea chinensis[J]. Chin Agric Sci Bull, 2012, 28(4):28-31.
    [26]
    LI Yang, QIAO Yuhui, MO Xiaohui, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. J Agro-Environ Sci, 2010, 29(suppl):250-255.
    [28]
    ZHU Xiaoting, DONG Lijun, LIN Xiazhen, et al. Comparison on physicochemical properties of common light with that made by agricultural and forestry waste[J]. J Zhejiang For Sci Technol, 2011, 31(2):57-60.
    [29]
    KANG Hongmei, ZHANG Qixiang, TANG Jing. Resesrch advances on growth media[J]. Chin J Soil Sci, 2005, 36(1):124-127.
    [30]
    YANG Lan, YANG Dejun, QIU Qiong, et al. Substrate composition experiments on Betula alnoides seedlings[J]. J Sichuan For Sci Technol, 2017, 38(1):65-68.
    [31]
    WU Yajing, BI Jun, LI Qiuyan, et al. Selection of shiitake residue substrate size formula screening for Pinus tabuliformis container seedlings[J]. J Zhejiang A&F Univ, 2015, 32(3):483-487.
    [32]
    LU Min, JIANG Fengqi, SONG Xuan. Assessing indices of container seedling quality[J]. Chin J Appl Ecol, 2002, 13(6):763-765.
    [33]
    SUN Yan, YANG Xiuzhen, QIAN Lu, et al. Growth and physiological characteristics of Cymbidium hybridum 'Shijieheping' in peanut hull media[J]. J Zhejiang A&F Univ, 2015, 32(4):566-571.
    [34]
    LI Yingchun, GUO Ziwu, CHEN Shuanglin, et al. Changes in photosynthetic and physiological characteristics of leaf of Phyllostachys rivalis under different flooding conditions[J]. J Plant Resour Environ, 2016, 25(4):42-52.
    [35]
    GONG Xiaoqiang, LI Suyan, LI Yan, et al. Compost and vermicompost from green wastes as substrates for vegetable seedlings cultivation[J]. J Zhejiang A&F Univ, 2016, 33(2):280-287.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(7)

Article views(2779) PDF downloads(512) Cited by()

Related
Proportional views

Matrix formula with forest waste and their effects on Tectona grandis growth

doi: 10.11833/j.issn.2095-0756.2018.06.005

Abstract: To promote the utilization of forest wastes and reduce the exploitation of peat, a seedling test on Tectona grandis was conducted with the main raw materials of forest wastes as the seedling substrate. Taking wood fiber (WB), sawdust (SD), coir dust (CD), and retted bark (RB) as main raw materials and peat (PT), yellow soil (YS), perlite (PL), vermiculite (VC), and burned soil (BS) as auxiliary materials, 16 different matrix formulations were mixed with different volume ratios. The control (T1) formula was YS:SD:BS=6:3:1. Physicochemical properties of the substrates and their effects on the growth and physiological status of T. grandis seedlings were studied using the subjection function method to evaluate the effect of each substrate on seedling growth. Then, the best suitable matrix formulation for seedling growth was screened out. Results showed significant differences (P < 0.05) between indicators of different substrates. Of the sixteen kinds of forestry waste formulation substrates, bulk density was 0.1-0.8 g·cm-3, total porosity was 35.87%-63.35%, and capillary porosity was 24.78%-53.05%; pH was 5.29-7.43. Compared to the control, available N, available P, available K, EC, and aeration porosity were higher or significantly higher (P < 0.05); bulk density was significantly lower (P < 0.05). Differences among the indexes included T10, T11 and T12. For height growth and increment of soil diameter in the formulation matrix, main root length, the number of lateral roots per plant, the leaf area per plant, leaf stem and leaf dry weight, root dry weight, seedling quality index, and total chlorophyll were significantly higher (P < 0.05) than the control group. The comprehensive evaluation results showed that the comprehensive evaluation indexes of T10, T11 and T12 are 0.42, 0.42, and 0.56 were significantly (P < 0.05) higher than those of the control group (0.22). Thus, to reduce the use of peat, T10 and T11 were recommended as the best seedling substrates for T. grandis.

AI Juanjuan, HOU Lingyu, SHAO Guodong, LI Zhichao, LU Lihua, LI Zhaoying, SUN Qiwu. Matrix formula with forest waste and their effects on Tectona grandis growth[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1027-1037. doi: 10.11833/j.issn.2095-0756.2018.06.005
Citation: AI Juanjuan, HOU Lingyu, SHAO Guodong, LI Zhichao, LU Lihua, LI Zhaoying, SUN Qiwu. Matrix formula with forest waste and their effects on Tectona grandis growth[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1027-1037. doi: 10.11833/j.issn.2095-0756.2018.06.005
  • 林业废弃物亦称林业剩余物,包括森林采伐剩余物、木材加工剩余物及育林剪枝剩余物,统称林业“三剩物”,具有种类多、易获取、可再生、可生物降解并且含有一定养分等优点。长期以来,对于林业废弃物的处理方式多为丢弃或焚烧,这不仅造成了资源的浪费而且造成了环境的严重污染[1-3]。草炭因具有持水保水力强、通气性良好、保肥力高等优点,是育苗常规基质的主要原料。草炭是一种不可再生资源。开采草炭对环境破坏很大,并且现阶段由于草炭资源大量减少,中国已逐步禁止开采草炭[4-5]。因此开发利用当地成本低、容易获得的林业废弃物替代草炭作为育苗基质,既可以促进林业废弃物资源的循环再利用,又降低了育苗基质成本,并且还起到保护环境的作用[6]。研究表明,大部分林业废弃物类型均可通过基质化开发技术实现资源的循环再利用[7-8]。柚木Tectona grandis属马鞭草科Verbenaceae落叶或半落叶大乔木,是著名的热带地区珍贵阔叶用材树种,素有“万木之王”的美誉,原产于缅甸、泰国、老挝等东南亚地区[9-11],其材质坚硬、纹理美观、加工性能好,是高级家具、贴面板、装饰、雕刻、乐器、军需、桥梁、建筑、船舶等珍贵优良用材树种之一[12]。柚木具有生长快,材质优良,用途广和投资回报率高等特点,在热带、南亚热带地区广为种植[13]。育苗基质的选择是否恰当关系到育苗效果的好坏。目前,柚木传统育苗常以黄心土为主要基质,依靠手工装袋其育苗效果好,运输成本高,但环保性有待进一步改善[14],而将林业废弃物用于柚木育苗栽培的研究,目前尚未见报道。鉴于此,本研究以木纤维、椰糠、锯末、树皮等林业废弃物替代草炭作为柚木育苗基质主料,进行不同基质配方试验研究,分析各基质配方特性及其对柚木幼苗生长和生理特性的影响,通过对不同基质的育苗效果进行综合评价,以期筛选出育苗效果较好、易获取、可持续再生的经济环保型基质,为培育柚木优质容器苗提供技术保障及理论依据,也为林业废弃物资源化探索新途径。

  • 试验地点位于广西壮族自治区凭祥市中国林业科学研究院热带林业实验中心苗圃,地处中国南亚热带(21°57′N,106°47′E),海拔为250 m,属于季风气候,终年温暖湿润,年降水量为1 200~1 400 mm,集中在4-9月,空气相对湿度80%,年平均气温为21.5 ℃,全年日照时数为1 218~1 620 h,气候适宜柚木生长。

  • 选择生长健壮且长势一致,苗高为(3 ± 1) cm的柚木种苗。育苗容器采用直径20 cm × 高25 cm黑色营养袋。

  • 以林业废弃物木纤维、椰糠、锯末、树皮为主要基础基质,其中木纤维为进口压缩木纤维,使用前用专用机器进行松散均一化处理;树皮为马尾松Pinus massoniana树皮,经粉碎并充分腐熟处理;椰糠为市场购买成品;锯末为当地木材加工厂购买后进行碳化处理。以上林业废弃物与珍珠岩、蛭石以不同的体积比混合而成,其中以当地常用黄心土为主料的基质配方(T1)作为对照,16种基质组成配方见表 1

    基质配方 基质组成
    沤制树皮 锯末 椰糠 木纤维 黄心土 火烧土 草炭 珍珠岩 炭化树皮 蛭石
    T1 3 6 1
    T2 3 1 5 1
    T3 3 2 4 1
    T4 3 3 3 1
    T5 6 3 1
    T6 5 3 2
    T7 4 4 2
    T8 3 3 2 2
    T9 6 2 1 1
    T10 5 3 1 1
    T11 3 4 3
    T12 3 3 4
    T13 6 4
    T14 5 5
    T15 4 4 1 1
    T16 3 3 2 2
    说明:基质配方均为体积比

    Table 1.  Treatments of matrix formula

  • 栽培试验开始前,对上述16种基质的理化性质进行测定,参照TIAN等[15]的方法测定总孔隙度、通气孔隙度、持水孔隙度和容重;参照程斐等[16]的方法测定pH值和电导率;有机质质量分数测定采用重铬酸钾氧化外加热法;碱解氮测定采用LY/T 1229-1999《森林土壤水解性氮的测定》碱解扩散法;有效磷测定采用盐酸-硫酸浸提法;速效钾采用LY/T 1236-1999《森林土壤速效钾的测定》乙酸铵浸提-火焰光度法测定。各指标均重复测定3次。

  • 于2016年12月25日将供试柚木幼苗根系附着基质洗净后,分别栽入配置好的16种基质中,各处理重复3个,各重复10盆,1株·盆-1,即每个处理共计30株幼苗。试验期间进行遮阳处理,遮阳率为80%,不做任何施肥处理,仅做定期喷水维护。

  • 从2016年12月25日至2017年3月25日期间,隔30 d调查1次,用直尺(精度1 mm)测株高(基质表面到顶芽底部的高度),用游标卡尺(精度0.1 mm)测地径(贴于基质表面),及植株生长状况,共测4次。于2017年3月25日,每处理抽取3株完整标准植株(株高、地径接近于平均株高、地径的苗木),测量每株的苗高、地径,并计算高径比。每个单株分成地上部分和地下部分,用电子天平测定各处理的地上鲜质量和根部鲜质量,分别装入信封中,置于烘箱内经105 ℃杀青15 min,再在80 ℃烘至恒量,称取单株各部分的干质量,并计算根冠比单株总生物量和苗木品质指数,计算公式为:单株总生物量=茎叶干质量+根干质量;根冠比=根干质量/茎叶干质量;高径比=株高/地径;苗木品质指数(IQ) =苗木总干质量(g)/{[苗高(cm)/地径(mm)]+[茎叶干质量(g)/根干质量(g)]}[17]

  • 每处理抽取3株平均株,采集植株自上而下的第3片和第4片叶进行相关生理指标的测定。用无水乙醇法[18]测定叶绿素质量分数;用蒽酮比色法[19]测定可溶性糖质量分数;用考马斯亮蓝G-250比色法[20]测定可溶性蛋白质质量分数。每个指标均重复3次,结果取平均值。

  • 使用Excel 2010和SPSS 20.0软件进行相关实验数据的整理和统计分析,包括对基质理化性质及幼苗生长指标的Duncan多重比较进行显著性检验。单一指标比较并不能准确地反映各处理苗木的综合性状差异,因此,采用模糊数学中隶属函数值法[21]对各处理植株幼苗的生长发育状况做出较为准确的综合评价,通过综合评价指数筛选出最佳配方基质。采用以下公式求各个指标的隶属函数值:R(xi)=(xi-xmin)/(xmax-xmin)。其中:R为所选取的苗木质量评价指标的隶属度值,xi为某一指标测定值,xminxmax为该指标的最小值和最大值,将植株不同指标的隶属函数值进行累加后求其平均值。植株综合评价指数值越大,说明植株生长越好。

  • 基质的理化性质是衡量基质特性的重要指标,直接影响植物的生长发育[22]。由表 2可看出:16种不同基质的容重差异显著(P<0.05),其中T1和T2容重最大,为0.8 g·cm-3左右;T9,T10,T11,T12容重较小,均为0.4 g·cm-3以下。李婧等[23]研究表明:植物适宜生长的基质容重应在0.1~0.8 g·cm-3。因此,除T1和T2配方基质外,其他所有配方基质的容重均处于理想范围。理想基质总孔隙度应为54%~96%[24],16种基质中除对照T1和T2,T10,T11,T13,T14,T15,T16外,其余均在在此范围内,其中T9总孔隙度最高,显著高于其他15种基质,且与对照T1差异显著。基质的通气孔隙影响着植物根系的呼吸作用。由表 2可看出:16种基质中T9和T12的通气孔隙度较高,显著高于T1配方基质。李婧等[23]认为:理想基质通气孔隙度应为15%~30%。因此,仅T6,T9和T11的通气孔隙度处于理想通气孔隙度范围内,其余都低于理想范围,其中T1的总孔隙度和通气孔隙度明显低于理想基质栽培要求,而通气孔隙过低可能在栽培过程不利植物根系生长和根际微生物活动[25]。T14的总孔隙度和通气孔隙度较低的原因可能是椰糠未完全打碎形成较多细小团聚颗粒。持水孔隙的大小可以反映基质保水能力的强弱,对栽培过程植物是否受干旱有影响。16种基质的持水孔隙度为T3最高,明显高于对照组T1,持水孔隙度的大小顺序:T3>T5>T12>T8>T15>T7>T6>T4>T2>T16>T9>T13>T10>T1>T14>T11,T11的持水孔隙度最低,但其总孔隙度和通气孔隙度均较高。可能木纤维未经过发酵处理,导致其吸水性和保水性相对较差,而T8保水性强的原因可能是其沤制过的松树皮内含有的大量腐殖质物质作用引起[26]

    编号 ρ基质/(g·cm-3) 总孔隙度/% 通气孔隙/% 持水孔隙/%
    T1 0.80 ± 0.07 a 41.34 ± 0.66 f 8.02 ± 0.05 d 33.32 ± 0.63 f
    T2 0.81 ± 0.03 a 52.53 ± 0.33 e 10.52 ± 0.23 c 42.01 ± 0.53 e
    T3 0.59 ± 0.06 b 61.38 ± 3.31 ab 8.35 ± 0.08 d 53.03 ± 3.35 a
    T4 0.56 ± 0.06 bc 56.02 ± 2.92 cde 12.34 ± 0.23 c 43.68 ± 3.09 de
    T5 0.52 ± 0.06 bc 60.25 ± 2.05 abc 7.71 ± 1.77 de 52.55 ± 0.48 a
    T6 0.48 ± 0.03 bcd 59.54 ± 0.95 abc 15.55 ± 1.78 b 43.99 ± 2.73 de
    T7 0.50 ± 0.06 bcd 53.27 ± 0.70 de 6.29 ± 0.04 de 46.98 ± 0.66 cd
    T8 0.47 ± 0.05 bcd 57.22 ± 2.36 bcd 6.36 ± 0.25 de 50.86 ± 2.56 abc
    T9 0.26 ± 0.07 f 63.35 ± 1.20 a 21.74 ± 0.44 a 41.61 ± 1.36 e
    T10 0.21 ± 0.04 f 44.66 ± 2.86 f 10.84 ± 0.44 c 33.83 ± 2.62 f
    T11 0.39 ± 0.10 e 40.34 ± 3.86 f 15.56 ± 2.25 b 24.78 ± 1.61 g
    T12 0.26 ± 0.08 f 58.82 ± 4.58 bc 6.62 ± 3.07 de 52.20 ± 7.62 ab
    T13 0.49 ± 0.10 bcd 38.85 ± 2.33 fg 2.00 ± 0.2 f 36.86 ± 2.53 f
    T14 0.45 ± 0.07 cd 35.87 ± 2.30 g 3.57 ± 0.68 f 32.30 ± 1.62 f
    T15 0.46 ± 0.07 cd 53.15 ± 0.83 de 5.55 ± 0.33 e 47.60 ± 0.94 bcd
    T16 0.56 ± 0.08 bc 52.26 ± 0.58 e 10.49 ± 0.24 c 41.78 ± 0.68 e
    说明:同列不同字母表示在0.05水平上差异显著

    Table 2.  Physical property of different treatments

  • 不同基质配方对基质的化学性质影响显著。表 3所示:不同处理基质的pH值差异明显,16种基质的pH值范围为5.29~7.43。除以木纤维为主料的配方基质(T9,T10,T11,T12)为偏酸性,pH 5.29~5.73外,其余均近中性,pH 6.72~7.43。不同习性植物对pH值要求不同。理想基质的pH值应控制在pH 6.0~7.5范围内为宜[27],否则不利于根系生长发育,并且会影响根系对营养元素的吸收。而这些以木纤维为主料的配方基质的pH值较低但仍具有较好的育苗效果,主要原因可分为2个方面:一方面可能柚木是南方树种,适宜在酸性环境下生长,另一方面也可能是此配方其碱解氮和有机质较高。

    编号 pH值 σ/(S·m-1) w碱解氮/(mg·kg-1) w有效磷/(mg·kg-1) w速效钾/(mg·kg-1) w有机质/(g·kg-1) 碳/氮(C/N)
    T1 7.08 ± 0.06 cd 0.004 ± 0.002 g 94.50 ± 0.00 j 36.53 ± 0.37 d 50.62 ± 3.83 j 7.26 ± 1.45 f 60.14 ± 3.84 gh
    T2 7.05 ± 0.02 cde 0.006 ± 0.000 ef 117.83 ± 41.02 ij 26.96 ± 0.59 e 49.50 ± 1.46 j 5.45 ± 0.08 f 35.72 ± 1.03 ij
    T3 7.02 ± 0.08 de 0.007 ± 0.001 def 120.75 ± 1.75 hi 34.93 ± 1.04 d 84.61 ± 2.53 g 7.02 ± 0.28 f 53.93 ± 2.13 h
    T4 7.12 ± 0.05 bc 0.011 ± 0.001 c 112.00 ± 3.50 ij 41.80 ± 2.08 bcd 119.08 ± 3.14 e 12.68 ± 1.85 e 68.46 ± 5.02 fg
    T5 7.00 ± 0.05 e 0.013 ± 0.001 ab 309.75 ± 1.75 d 46.55 ± 2.37 bc 94.03 ± 1.11 f 29.97 ± 2.16 bcd 86.75 ± 1.04 cd
    T6 6.85 ± 0.02 f 0.013 ± 0.000 abc 297.50 ± 7.00 de 32.70 ± 2.79 de 118.12 ± 0.48 e 33.58 ± 1.69 b 78.71 ± 3.58 de
    T7 6.82 ± 0.03 f 0.013 ± 0.001 abc 280.00 ± 10.50 ef 34.53 ± 1.48 d 123.23 ± 5.71 e 32.16 ± 6.08 bc 88.91 ± 8.54 c
    T8 6.72 ± 0.07 g 0.014 ± 0.002 a 266.00 ± 7.00 f 75.78 ± 5.35 a 136.31 ± 1.73 d 31.09 ± 3.15 bc 89.10 ± 3.02 c
    T9 5.46 ± 0.07 j 0.005 ± 0.001 fg 490.00 ± 7.00 c 12.02 ± 0.67 ef 81.50 ± 2.63 h 29.26 ± 0.63 bcd 38.56 ± 2.32 i
    T10 5.29 ± 0.07 k 0.008 ± 0.001 d 542.50 ± 7.00 b 19.54 ± 0.63 ef 63.87 ± 3.53 i 25.67 ± 0.56 d 28.05 ± 2.17 j
    T11 5.73 ± 0.07 i 0.005 ± 0.001 fg 545.77 ± 23.01 b 72.67 ± 3.01 a 156.26 ± 2.26 c 40.82 ± 1.94 a 32.76 ± 0.89 ij
    T12 5.51 ± 0.03 j 0.007 ± 0.001 de 652.75 ± 19.25 a 25.72 ± 0.37 f 92.59 ± 6.64 f 32.58 ± 3.94 bc 27.02 ± 1.04 j
    T13 6.36 ± 0.01 h 0.012 ± 0.001 bc 147.00 ± 7.00 g 42.17 ± 4.23 bc 227.59 ± 1.20 a 43.80 ± 3.94 a 176.06 ± 8.75 a
    T14 6.39 ± 0.02 h 0.013 ± 0.001 abc 144.67 ± 10.69 gh 51.52 ± 1.41 b 227.75 ± 2.87 a 43.51 ± 2.11 a 168.83 ± 13.30 a
    T15 7.16 ± 0.04 b 0.015 ± 0.001 a 143.50 ± 10.50 gh 8.63 ± 1.16 g 193.12 ± 6.32 b 27.54 ± 3.72 cd 121.08 ± 4.95 b
    T16 7.43 ± 0.05 a 0.014 ± 0.001 a 126.00 ± 6.06 ghi 3.37 ± 0.44 h 197.43 ± 1.54 b 12.99 ± 1.85 e 70.88 ± 2.57 ef
    说明:同列不同字母表示在0.05水平上差异显著

    Table 3.  Chemical property of different treatments

    电导率(EC)是基质水溶液中离子总浓度的指标,可以反映基质当中可溶性养分总量,电导率过高会造成盐害和烧根,电导率过低,则植物矿质营养不足[28],T2~T16配方基质的电导率均显著高于T1(对照),以T8,T15和T16最高,其他配方基质次之。理想基质的电导率应小于0.25 S·m-1[29]。本试验中16种基质的电导率均在理想范围内,其中以林业废弃物为基料的配方基质电导率显著高于对照(T1)。可能的原因是相比黄心土,林业废弃物中存在有机物质在微生物作用下降解释放出大量的可溶性矿质营养。

    基质中较高的碱解氮、有效磷、速效钾及有机质质量分数有利于根系发育和苗木生长。配方基质T2~T16的有机质质量分数显著高于对照组(T1),其中以林业废弃物为主要基质原料的基质配方(T5~T16)有机质质量分数均较为丰富,其中T11,T13和T14有机质质量分数最高,显著高于其他配方基质。16种基质中除T2和T4碱解氮质量分数和T1差异不显著外,其他配方基质均显著高于对照组(T1),其中以木纤维和沤制树皮为基料的基质碱解氮质量分数较高。16种基质中有效磷质量分数除T4,T5,T8,T11,T13和T14高于对照组T1外,其他均低于对照组(T1),其中T8和T11有效磷质量分数最高。T3~T16速效钾质量分数均显著高于T1。T2和T1处于同一水平,其中以林业废弃物为主要基质原料的配方基质速效钾较高。有研究表明,在选择栽培基质时,碳氮比(C/N)应低于50:1或更少,否则在有机体分解过程与植株生长相互竞争氮源,往往会导致植株缺氮,生长失调。本试验中16种基质中T13,T14和T15的C/N最高,且随着锯末成分的增加C/N也增加,可能的原因是基质配方中锯末中的质量分数较高。有研究数据显示,锯末的C/N达160.00:1.00。T9,T10,T11和T12最低,均小于50,显著低于对照组T1(60.14:1.00)和其他配方基质。

    16种配方基质中以黄心土为主料的配方基质(T1~T4)的理化性质除pH值和持水孔隙适宜外,其他理化性质指标均表现较差,可能是黄心土浇水时间久后易板结,使基质的通气孔隙的降低,导致根系长势不良[30]

    综上所述,物理性质方面,T6,T8,T9,T10,T11,T12,T15和T16各项指标都比较好。化学性质方面,T19,T10,T11和T12的pH值偏低,T9的有效磷较低,T10的速效钾较低,其余各处理的各项指标都表现良好。综合各配方基质的理化性质,考虑到基质中的磷元素和钾元素可以通过后期施肥加以补充,初选出T8,T9,T10,T11,T12,T15和T16配方基质作为栽培柚木的试验基质。

  • 植株生长指标是能够反映植株长势强弱的重要指标,在一定程度上可反映植株的健壮程度,可直观判断不同配方基质对植物的效果差异,其中苗高、地径是评价容器育苗的主要形态指标[31]。由图 1可知:不同基质中柚木幼苗的株高增长量、地径增长量均存在一定的差异,其中以木纤维为基料的配方基质(T9~T12)苗高和地径增长量均显著(P<0.05)高于对照组(T1)和其他配方基质,表现出明显的生长优势。除T2的苗高和地径外,其他配方基质均高于对照组(T1),可能的原因是林业废弃物中存在适宜柚木生长所需的营养元素,能促进柚木生长。高径比可以反映苗木地上部伸长生长与加粗生长之间的协调关系以及地上部生长的健壮程度。由表 3可见:16种基质中栽培中的柚木幼苗的高径比除T11显著大于T8外,其他无显著差异。

    Figure 1.  Height and stem diamete increment of Tectona grandis seedlings under different substrate cultivation

    表 4表明:不同基质中柚木幼苗的单株茎叶面积、主根长、侧根数、单株叶片数、高径比均存在一定的差异。T10,T11和T12柚木幼苗的单株叶面积均显著高于T1配方基质,而T2和T3配方基质与T1差异不显著,T9,T11和T12柚木幼苗的叶片数高于T1,但差异不显著。主要原因可能是因为基质中含有较高的氮素等叶生长所需营养,且营养元素有效性高,从而更有利于幼苗叶片的生长。

    编号 单株叶面积/cm2 单株叶片数/片 主根长/cm 侧根数/条 高径比
    T1 5.74 ± 0.72 g 7.33 ± 1.53 abc 12.67 ± 2.52 f 4.33 ± 2.52 f 3.40 ± 0.31 ab
    T2 10.77 ± 0.91 fg 6.67 ± 1.15 bc 21.00 ± 3.61 bcde 16.33 ± 4.73 def 2.95 ± 0.03 ab
    T3 8.86 ± 0.79 fg 6.33 ± 2.89 c 16.33 ± 2.08 ef 12.00 ± 4.36 ef 3.37 ± 0.25 ab
    T4 17.73 ± 2.80 def 8.67 ± 1.15 abc 20.33 ± 4.16 bcdef 15.00 ± 9.64 def 2.96 ± 0.22 ab
    T5 29.35 ± 4.01 d 8.67 ± 1.15 abc 14.67 ± 2.52 ef 16.00 ± 6.08 def 3.14 ± 0.89 ab
    T6 25.98 ± 3.90 d 9.67 ± 3.21 ab 15.67 ± 2.52 ef 18.67 ± 9.61 cde 2.95 ± 0.38 ab
    T7 18.99 ± 1.19 de 8.33 ± 0.58 abc 22.00 ± 3.00 bcde 14.00 ± 4.00 def 2.84 ± 0.63 ab
    T8 24.08 ± 2.25 d 9.00 ± 1.00 abc 26.50 ± 6.50 bc 22.00 ± 5.57 cde 2.65 ± 0.18 b
    T9 44.91 ± 4.12 c 10.33 ± 1.53 a 26.67 ± 5.51 bc 29.33 ± 4.73 bc 3.23 ± 0.39 ab
    T10 65.59 ± 23.03 b 8.67 ± 1.53 abc 25.13 ± 8.02 bcd 29.00 ± 13.08 bc 2.94 ± 0.13 ab
    T11 63.61 ± 8.22 b 10.33 ± 2.08 a 27.33 ± 1.53 b 38.67 ± 2.52 b 3.69 ± 0.10 a
    T12 124.95 ± 7.62 a 10.00 ± 2.00 a 40.47 ± 4.62 a 77.67 ± 10.26 a 3.07 ± 0.78 ab
    T13 19.09 ± 6.00d e 9.33 ± 1.15 abc 19.20 ± 5.37 cdef 24.67 ± 0.58 cde 2.81 ± 0.49 ab
    T14 17.12 ± 0.49 def 9.33 ± 1.15 abc 20.43 ± 4.14b cdef 26.00 ± 7.81 cd 2.63 ± 0.75 b
    T15 21.88 ± 3.61 de 7.67 ± 0.5 abc 21.03 ± 1.45 bcde 16.00 ± 1.00 def 3.39 ± 0.11 ab
    T16 25.18 ± 3.47 d 9.33 ± 1.53 abc 17.27 ± 0.74 def 22.33 ± 2.52 cde 2.73 ± 0.39 b
    说明:同列不同字母表示在0.05水平上差异显著

    Table 4.  Effects on morphological index of seedling of Tectona grandis in different treatments

    T2~T16基质中柚木的主根长均大于对照组(T1),其中T7,T8,T10,T11和T12柚木幼苗的主根长显著大于对照组(T1)。T6,T7,T9,T10,T11和T12的侧根数显著大于对照组(T1),可能的原因是以木纤维为主料的配方基质(T9~T12)的孔隙度和保水性等物理性质适宜,其自身的养分供应能满足柚木幼苗根系的发育所需,因此可以促进根系的生长。

    总体来看,不同配方基质对柚木幼苗株高、地径、主根长、单株侧根数和单株叶面积的影响均较大,且主要影响株高、单株叶面积和侧根数,而对高径比的影响却较小,其中以木纤维为基料的配方基质(T9~T12)的单株叶面积、主根长、侧根数、单株叶片数均高于以其他林业废弃物为基料的配方基质,且显著高于对照组(T1)表现出良好的生长状况。因此,再次选出T9,T10,T11和T12配方基质作为栽培柚木的试验基质。

  • 表 5表明:不同基质中柚木幼苗的单株茎叶干质量、单株根干质量、总生物量、根冠比、苗木品质指数存在一定差异。T12配方基质的单株茎叶干质量和单株根干质量最高,显著高于其他配方基质,其次是T10和T11,显著高于对照组T1。干物质质量是衡量植物营养和生长状况的重要指标[32]。苗木的生物量是反映物质积累状况的主要指标[33]。由表 5可见:T4~T16基质的生物量均显著高于对照组(T1),其中T9,T10,T11和T12的生物量显著高于其他配方基质。可能的原因是这4种配方基质的养分含量较高,促进了植株叶片和根系的生长。根冠比反映植物的生长状况,以及环境条件对地上部与地下部生长的影响。表 5可看出:除T12的根冠比最高外,其他配方基质的根冠比差异不显著,表明本研究中柚木生长环境对柚木的地上部与地下部生长的影响较小。

    编号 单株茎叶干质量/g 单株根干质量/g 总生物量/g 根冠比 苗木品质指数
    T1 4.17 ± 0.04 d 4.20 ± 0.09 e 8.36 ± 0.13 e 1.01 ± 0.02 b 2.28 ± 0.20 d
    T2 4.34 ± 0.08 d 4.22 ± 0.04 e 8.56 ± 0.11 e 0.97 ± 0.01 b 2.52 ± 0.17 d
    T3 4.21 ± 0.06 d 4.13 ± 0.06 e 8.34 ± 0.01 e 0.98 ± 0.03 b 2.47 ± 0.36 d
    T4 4.71 ± 0.04 d 4.52 ± 0.38 de 9.23 ± 0.38 de 0.91 ± 0.01 bc 2.88 ± 0.09 cd
    T5 5.15 ± 0.10 d 4.54 ± 0.41 de 9.69 ± 0.48 de 0.91 ± 0.04 bc 2.86 ± 0.75 cd
    T6 5.49 ± 0.07 cd 4.57 ± 0.33 de 10.06 ± 0.35 de 0.90 ± 0.05 bc 2.99 ± 0.57 bcd
    T7 4.75 ± 0.11 d 4.64 ± 0.17 de 9.39 ± 0.26 de 0.98 ± 0.03 b 3.00 ± 0.63 bcd
    T8 4.81 ± 0.36 d 4.52 ± 0.11 de 9.33 ± 0.46 de 0.95 ± 0.05 b 3.10 ± 0.32 bcd
    T9 7.23 ± 0.90 bcd 6.17 ± 0.89 bc 13.40 ± 1.72 bc 0.85 ± 0.06 bc 4.31 ± 0.57 b
    T10 9.36 ± 0.26 b 6.83 ± 1.87 b 16.19 ± 1.72 b 0.64 ± 0.14 d 3.98 ± 1.20 bc
    T11 8.36 ± 2.47 bc 6.04 ± 1.14 bcd 14.40 ± 3.60 b 0.74 ± 0.07 cd 3.31 ± 1.26 bcd
    T12 18.51 ± 6.14 a 23.59 ± 4.54 a 42.10 ± 4.23 a 1.34 ± 0.37 a 5.61 ± 0.62 a
    T13 5.09 ± 0.32 d 4.87 ± 0.55 cde 9.96 ± 0.85 de 0.95 ± 0.06 b 3.20 ± 0.74 bcd
    T14 5.12 ± 0.48 d 5.05 ± 0.41 cde 10.16 ± 0.89 de 0.99 ± 0.02 b 3.47 ± 0.84 bcd
    T15 4.97 ± 0.48 d 5.07 ± 0.11 cde 10.04 ± 0.54 de 1.02 ± 0.09 b 3.12 ± 0.75 bcd
    T16 4.84 ± 0.49 d 4.80 ± 0.32 cde 9.64 ± 0.77 de 0.99 ± 0.06 b 3.15 ± 0.58 bcd
    说明:同列不同字母表示在0.05水平上差异显著

    Table 5.  Effects on biomass and seedling quality of seedling of Tectona grandis in different treatments

    苗木品质指数是综合分析了数个指标计算得出的,能更加全面地反映被测苗木的品质优劣,其他指标,如高径比和冠根比等越小,总干质量数值越大,品质指数就会越高,苗木的品质也就越好。由表 5可见:不同基质的柚木幼苗的品质指数差异显著。其中T9,T10和T12配方基质苗木品质指数较大,显著大于对照组(T1),而其他配方与T1差异不显著。

    综上可见,不同基质中柚木幼苗的单株茎叶干质量、单株根干质量、总生物量、根冠比、苗木品质指数影响较大,其中苗木品质指数、总生物量、单株茎叶干质量、单株根干质量对柚木幼苗生长影响最大,而对根冠比影响较小,但这些以林业废弃物为基料的配方基质的生物量和苗木品质指数均高于对照组,总体来说对柚木的生长具有很明显的促进作用。

  • 植株生理指标是反映苗木长势强弱的重要指标,可间接反映不同基质配方对柚木幼苗的促进作用。表 6表明:不同基质中柚木幼苗的总叶绿素、可溶性糖、可溶性蛋白质质量分数和叶绿素a/b均存在一定差异,但叶绿素a/b差异不明显。可溶性糖是很多植物的主要渗透调节剂,其益于维持植物生长代谢的正常进行,可以用它的质量分数变化来判断植物的生长状态和植物生理,从而间接反映出苗木的生长情况[34]。T3,T10,T14和T15配方基质可溶性糖质量分数与对照组处于同一水平,T6显著低于对照组,其他均高于对照组,且T12配方基质可溶性糖质量分数最高。T16配方基质的可溶性蛋白最高,显著高于对照组,其次是T5,T8,T9,T10,T11和T15,均高于对照组配方基质。叶绿素作为光合作用的载体,其质量分数的多少是衡量植物叶片光合能力和生长各阶段良好的重要指标之一,而叶绿素a/b能够反映植物叶片的光合作用强度[35]。由表 6可见:T11和T12配方基质的叶绿素质量分数最高,显著高于其他配方基质,其中以黄心土为基料(T2~T4)和以沤制松树皮为基料(T5~T8)的配方基质的与对照组处于同一水平,而以锯末为基料的配方基质(T13~T16)的总叶绿素质量分数最低,可能的原因是锯末中所含的养分不足以供应植物叶片生长,导致其光合作用能力下降,叶绿素减少。

    编号 w总叶绿素/
    (mg·g-1)
    叶绿素
    a/b
    w可溶性糖/
    (mg·g-1)
    w可溶性蛋白质/
    (mg·g-1)
    T1 0.37 ± 0.02 bcde 0.10 ± 0.02 a 0.34 ± 0.04 b 3.00 ± 0.93 c
    T2 035 ± 0.04 cde 0.11 ± 0.01 a 0.27 ± 0.05 ab 3.79 ± 0.20 bc
    T3 0.34 ± 0.04 cde 0.11 ± 0.01 a 0.33 ± 0.02 b 4.51 ± 0.46 abc
    T4 0.49 ± 0.11 abc 0.08 ± 0.04 b 0.32 ± 0.07 ab 3.61 ± 0.17 bc
    T5 0.37 ± 0.07 bcde 0.08 ± 0.04 b 0.24 ± 0.02 ab 4.53 ± 1.07 ab
    T6 0.35 ± 0.05 de 0.10 ± 0.02 a 0.21 ± 0.03 c 3.87 ± 0.32 abc
    T7 0.36 ± 0.02 bcde 0.10 ± 0.00 a 0.29 ± 0.06 ab 3.22 ± 0.33 bc
    T8 0.37 ± 0.08 bcde 0.09 ± 0.02 b 0.31 ± 0.03 ab 4.23 ± 0.63 abc
    T9 0.50 ± 0.08 ab 0.06 ± 0.01 b 0.26 ± 0.03 ab 4.32 ± 1.22 abc
    T10 0.49 ± 0.12 abcd 0.08 ± 0.02 b 0.32 ± 0.12 b 3.99 ± 1.23 abc
    T11 0.54 ± 0.18 a 0.08 ± 0.02 b 0.25 ± 0.06 ab 4.05 ± 0.37 abc
    T12 0.53 ± 0.11a 0.07 ± 0.02 b 0.51 ± 0.04 a 3.61 ± 1.23 bc
    T13 0.27 ± 0.02 de 0.11 ± 0.01 a 0.29 ± 0.03 ab 4.09 ± 0.37 abc
    T14 0.30 ± 0.01 de 0.10 ± 0.02 a 0.32 ± 0.03 b 3.79 ± 0.27 bc
    T15 0.23 ± 0.01 de 0.10 ± 0.02 a 0.34 ± 0.10 b 4.39 ± 0.50 abc
    T16 0.28 ± 0.02 de 0.10 ± 0.01 a 0.31 ± 0.06 ab 5.29 ± 1.16 a
    说明:同列不同字母表示在0.05水平上差异显著

    Table 6.  Effects on physiological index of seedling of Tectona grandis in different treatments

    综合不同基质对柚木幼苗生理指标的影响,可看出T10,T11,T12和T15表现较好,T3,T5,T8和T9次之。通过对不同基质的柚木形态和生理指标的分析可以看出,与对照相比,T10,T11和T12配方基质在整体上表现突出,可以初步确定这3种基质配方作为柚木幼苗育苗基质较为适宜。为了进一步确定最佳选择,下面将通过对基质各指标的综合评价进行分析,做出进一步筛选。

    在对苗木生长效果评价时,虽然苗木质量指数是较常用的评价育苗效果的参考指标,但仅通过单一指标比较并不能准确地反映各处理苗木的综合性状差异,需要由几个参数共同来确定[39]。本研究采用模糊数学中隶属函数的方法,求出15个主要指标(株高、地径、单株茎叶面积、主根长、侧根数、单株叶片数、高径比、单株茎叶干质量、单株根干质量、总生物量、根冠比、总叶绿素、叶绿素a/b、可溶性糖、可溶性蛋白质)的隶属函数值平均值,进行综合评价。结果表明(表 7):T12配方基质的育苗效果最佳,综合得分最高,为0.68;T10和T11育苗效果次之,均为0.42。其中对照组T1的综合得分最低,其育苗效果最差,而除T9和T16外,其他林业废弃物为基料的基质的育苗效果一般,因此,可选木纤维为基料的配方基质作为柚木幼苗育苗的最佳基质配方。

    编号 苗高/
    cm
    地径/
    cm
    总生物量/
    g
    地上干质量/g 地下干质量/g 主根长/cm 侧根数/条 根冠比 苗高/
    地径
    w叶绿素/(mg·kg-1) 叶绿素
    a/b
    w可溶性糖/(g·kg-1) ρ可溶性蛋白质/(μg·L-1) 叶面积/
    cm2
    叶片数/片 综合评价指数
    T1 0.01 0.02 0.00 0.00 0.01 0.08 0.03 0.40 0.62 0.33 0.77 3.6 0.24 0.01 0.48 0.22
    T2 0.06 0.08 0.01 0.01 0.01 0.31 0.16 0.37 0.41 0.28 0.83 1.6 0.42 0.05 0.41 0.24
    T3 0.03 0.06 0.00 0.00 0.00 0.18 0.11 0.38 0.61 0.26 0.87 3.5 0.58 0.03 0.37 0.26
    T4 0.13 0.12 0.02 0.03 0.02 0.29 0.15 0.33 0.41 0.59 0.38 3.2 0.38 0.10 0.63 0.26
    T5 0.14 0.17 0.03 0.05 0.02 0.13 0.16 0.33 0.50 0.32 0.46 1.0 0.58 0.19 0.63 0.25
    T6 0.14 0.22 0.04 0.07 0.02 0.16 0.19 0.31 0.40 0.28 0.78 0.0 0.43 0.16 0.74 0.26
    T7 0.12 0.17 0.03 0.03 0.02 0.34 0.14 0.38 0.35 0.31 0.68 2.3 0.29 0.11 0.59 0.25
    T8 0.09 0.16 0.02 0.03 0.02 0.47 0.23 0.35 0.26 0.33 0.59 2.8 0.51 0.15 0.67 0.28
    T9 0.36 0.38 0.11 0.15 0.09 0.47 0.31 0.28 0.55 0.61 0.09 1.4 0.53 0.31 0.81 0.35
    T10 0.46 0.53 0.18 0.25 0.11 0.43 0.31 0.11 0.40 0.59 0.45 8.6 0.46 0.47 0.63 0.42
    T11 0.63 0.46 0.14 0.21 0.08 0.49 0.42 0.19 0.82 0.70 0.36 1.3 0.47 0.46 0.81 0.42
    T12 0.83 0.82 0.75 0.70 0.79 0.86 0.87 0.67 0.46 0.68 0.35 3.2 0.38 0.94 0.78 0.68
    T13 0.11 0.14 0.04 0.05 0.03 0.26 0.26 0.36 0.34 0.12 0.81 2.4 0.48 0.11 0.70 0.27
    T14 0.11 0.14 0.04 0.05 0.04 0.30 0.28 0.39 0.25 0.18 0.64 3.3 0.42 0.09 0.70 0.26
    T15 0.11 0.15 0.04 0.04 0.04 0.31 0.16 0.42 0.62 0.02 0.82 3.8 0.55 0.13 0.52 0.29
    T16 0.08 0.14 0.03 0.03 0.03 0.21 0.23 0.39 0.30 0.14 0.77 2.8 0.75 0.20 1.04 0.31

    Table 7.  Comprehensive evaluation on growth and development of Tectona grandis in different substrates

  • 试验表明:以林业废弃物为基料的配方基质大部分均适宜作为柚木育苗基质,其中以T10[V(木纤维):V(草炭):V(珍珠岩):V(蛭石)=5:3:1:1],T11[V(木纤维):V(草炭):V(椰糠)=4:3:3],T12[V(木纤维):V(草炭):V(椰糠)=3:4:3]配方基质最佳。这3种配方基质均具有利于柚木生长适宜的理化性状,基质质量较轻,易运输,且容重小,基质原料方便易得。T11具有较高的有效磷、速效钾和有机质,容重较低,有利于根系的生长和固定。T12具有良好的总孔隙度、通气孔隙度和持水孔隙度,利于基质对植物固持能力和保水能力。

    T10和T12的柚木幼苗生长指标方面优于T11。在生理指标上,T11和T12配方基质优于T10,理化性质三者相当。由于T12配方基质中草炭质量分数过高,成本高,其实用性和环保性有待改善。因此,根据上述研究结果,T10和T11配方基质均可作为柚木幼苗的育苗基质。由该基质培育的柚木幼苗的株高、地径、主根长侧根数、单株叶面积、叶片数、地上部分干质量、地下部分干质量、总生物量以及叶片的可溶性糖、可溶性蛋白质和叶绿素质量分数等均显著优于对照组。

    T10和T11配方基质的综合评价指数高于对照组和其他配方基质,以T10和T11配方基质替代草炭应用于柚木栽培育苗基质配方具有良好的育苗效果,建议在柚木育苗生产上应用。但研究结果只反映柚木的栽培配方筛选方面上,是否适用于其他植物的配方栽培有待进一步研究。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return