Volume 37 Issue 2
Apr.  2020
Turn off MathJax
Article Contents

LI Yanan, HUANG Shaorong, Geriletu, YAN Lijiao. Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta[J]. Journal of Zhejiang A&F University, 2020, 37(2): 251-258. doi: 10.11833/j.issn.2095-0756.2020.02.008
Citation: LI Yanan, HUANG Shaorong, Geriletu, YAN Lijiao. Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta[J]. Journal of Zhejiang A&F University, 2020, 37(2): 251-258. doi: 10.11833/j.issn.2095-0756.2020.02.008

Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta

doi: 10.11833/j.issn.2095-0756.2020.02.008
  • Received Date: 2019-04-15
  • Rev Recd Date: 2019-06-12
  • Publish Date: 2020-04-20
  •   Objective  Under the rapid development of urbanization, the impact of pollution caused by urban traffic noise on the living quality of urban residents has been increasingly recognized. Among many solutions to noise reduction, the green belts on the city roads enjoy the unique advantage in the reduction of traffic noise. The order is to provide references for the selection of measurement index of the noise reduction ability of the urban green belt, and give suggestions on how to achieve the optimal noise reduction effect of the urban green belt construction.  Method  This research studies the road forest belts on the major traffic roads of 11 areas (counties, cities and districts) in the Yangtze River Delta and uses the comprehensive comparative analysis of the ratio of different forest belt types, living vegetation volume and the under branch height to conduct a preliminary evaluation on the noise reduction of green belts.  Result  The noise reduction of green belts on the major traffic roads in Xuanwu District of Nanjing and Runzhou District of Zhenjiang are most effective among the 11 areas (counties, cities and districts), while those in Lianyun District of Lianyungang and Qingyuan Town of Lishui are least effective. Rationally mixed forest of arbor and shrub is better for the noise reduction. The results of the simulation model indicate a positive relationship between additional noise reduction of 11 areas (counties, cities and districts) and the living vegetation volume obtained from statistics.  Conclusion  From the comprehensive analysis of the combination of the living vegetation volume and the under branch height, it could be concluded that the effect of noise reduction within the range of 2 m of the under branch height is better.
  • [1] ZHAO Qing, ZHANG Chi, HU Rouxuan, XU Dongxian, QIAN Wanhui, WEI Yuhan, TANG Honghui.  Characteristics of the three-dimensional green quantity and recreation space for landscape-recreational forests in Zhuhai City . Journal of Zhejiang A&F University, 2021, 38(3): 534-540. doi: 10.11833/j.issn.2095-0756.20200455
    [2] LIU Haodong, CHEN Yajing, LI Qingdian, XIAO Mao, GUO Huiling, SHEN Weixing, TAN Yajun, LI Chuanrong.  Analysis of blocking effects of urban roadside forests on PM2.5 . Journal of Zhejiang A&F University, 2020, 37(3): 397-406. doi: 10.11833/j.issn.2095-0756.20190335
    [3] ZHAO Kai, TANG Lihua, ZHANG Shujing.  Research on interactively 3D tree modeling and visualization based on OpenGL . Journal of Zhejiang A&F University, 2019, 36(1): 138-147. doi: 10.11833/j.issn.2095-0756.2019.01.017
    [4] ZHU Yuyi, XIE Weijia, HUANG Huaguo.  Modeling sensible flux and latent flux in Heihe and boreal forests based on a 3D ENVI-met model . Journal of Zhejiang A&F University, 2018, 35(3): 440-452. doi: 10.11833/j.issn.2095-0756.2018.03.007
    [5] XU Shiyu, SHI Yongjun, FENG Shengfei.  Nondestructive and accurate measurement of volume and stem carbon storage for urban greening tree species based on terrestrial laser scanning point cloud . Journal of Zhejiang A&F University, 2018, 35(6): 1062-1069. doi: 10.11833/j.issn.2095-0756.2018.06.009
    [6] FENG Yunyun, LIU Lijuan, LU Dengsheng, PANG Yong.  A comparative study of dimension reduction methods for airborne hyperspectral images . Journal of Zhejiang A&F University, 2017, 34(5): 765-774. doi: 10.11833/j.issn.2095-0756.2017.05.001
    [7] ZHAO Qing, TANG Honghui, WEI Dan, QIAN Wanhui.  Spatial visibility of green areas of urban greenway using the green appearance percentage . Journal of Zhejiang A&F University, 2016, 33(2): 288-294. doi: 10.11833/j.issn.2095-0756.2016.02.014
    [8] LI Huawei, MU Bo, LEI Yakai, TIAN Guohang.  Landscape evaluation and function analysis of roadside linear green space . Journal of Zhejiang A&F University, 2015, 32(4): 611-618. doi: 10.11833/j.issn.2095-0756.2015.04.018
    [9] WANG Dongliang, JIN Hexian, FAN Likun, TANG Yuli.  Distribution and influencing factors of three-dimensional green biomass for artificial greenbelts in sanatoriums . Journal of Zhejiang A&F University, 2013, 30(4): 529-535. doi: 10.11833/j.issn.2095-0756.2013.04.011
    [10] LI Xiao-zheng, JIANG Chang-jie.  Plant community structure for street planting in Nanning . Journal of Zhejiang A&F University, 2011, 28(5): 761-766. doi: 10.11833/j.issn.2095-0756.2011.05.012
    [11] CAO Lei, WANG Zhi-yin, LIU Xiang-nong, YANG Yu-xiang.  Biomimetic synthesis of mesoporous silica support with a three-dimensional large-pore ordered structure . Journal of Zhejiang A&F University, 2010, 27(3): 437-444. doi: 10.11833/j.issn.2095-0756.2010.03.019
    [12] XU Wen-bing, TANG Meng-ping.  ree’s 3D coordinates positioned by two-side intersection with total station . Journal of Zhejiang A&F University, 2010, 27(6): 815-820. doi: 10.11833/j.issn.2095-0756.2010.06.002
    [13] DING Hong, JIN Yong-huan, CUI Jian-guo, ZHAO Lin-sen, PIAO Zheng-Ji.  Review on ranges of ecological road-effect zones . Journal of Zhejiang A&F University, 2008, 25(6): 810-816.
    [14] XUAN Gong-qiao.  Application of landscape ecology principle in urban green space system planning . Journal of Zhejiang A&F University, 2007, 24(5): 599-603.
    [15] XU Wen-hui, FAN Yi-rong, ZHU Jian-ping, FENG Hong.  An analysis of the actualities of the road landscaping in Hangzhou and improvement measures . Journal of Zhejiang A&F University, 2003, 20(3): 289-292.
    [16] LIU Xing-quan, XU Lu.  Three-dimensional quantitative structure-activity relationships between structure of pyrethroid and their acute toxicity . Journal of Zhejiang A&F University, 2002, 19(4): 337-341.
    [17] YU Shu-quan, LI Cui-huan, JIANG Li-yuan, XIE Ji-quan.  Community ecology of secondary vegetation in Qiandao Lake , Zhejiang Province . Journal of Zhejiang A&F University, 2002, 19(2): 138-142.
    [18] WANG Guo-liang.  On restoration ecology of Castanopsis eyrei forest in Mount Longxi of Fujian (Ⅰ) . Journal of Zhejiang A&F University, 2002, 19(4): 363-366.
    [19] CHAI Shou-quan, XU Guo-lian, XIE Kai-li, ZHAO Pei-xian, FENG Yong-gang, LI Pin-jun.  Bio-ecological characteristics of Dendrolimus punctatus tehchangensis in Yunnan Province . Journal of Zhejiang A&F University, 2002, 19(3): 277-281.
    [20] LIN Yuan-tai.  Restoration ecology on the Castanopsis fargesii forest in Wuyishan, Fujian Ⅰ. The effects of different scale of artificial disturbance on the flora of tree layer of Castanopsis fargesii . Journal of Zhejiang A&F University, 2001, 18(3): 252-256.
  • [1]
    PU QI. Study on the Impact Expressway and Main Road Traffic Noise on Its Surrounding Buildings in Shenzhen [D]. Harbin: Harbin Institute of Technology, 2017.
    [2]
    HU JUN, GE JIAN. Attenuation effect and simulation analysis of urban green belt on traffic noise[J]. Urban Environ Urban Ecol, 2013, 26(5): 33-36.
    [3]
    ZHANG Jing, GUO Xiaoping, WANG Bao, et al. Research progress on noise reduction mechanism and model of green belt[J]. J Trop Subtrop Bot, 2013, 21(4): 381-388.
    [4]
    VEISTEN K, SMYRONVA Y, KLÆBOLE R, et al. Valuation of green walls and green roofs as soundscape measures: including monetised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards[J]. Int J Environ Res Public Health, 2012, 9: 3770-3788.
    [5]
    ISLAM M N, RAHMAN K S, BAHAR M M. Pollution attenuation by roadside greenbelt in and around urban areas[J]. Urban For Urban Green, 2012, 11: 460-464.
    [6]
    YANG Fan, BAO Zhiyi, ZHU Zhujun. An assessment of psychological noise reduction by landscape plants[J]. Int J Environ Res Public Health, 2011, 8(4): 1032-1048.
    [7]
    HOSSEINI S A O, ZANDI S, FALLAH A, et al. Effects of geometric design of forest road and roadside vegetation on traffic noise reduction[J]. J For Res, 2016, 27(2): 463-468.
    [8]
    LI Guanheng, XIONG Jian, XU Menglin, et al. Comprehensive study on the noise reduction ability and the visual effect on the edge of green space of Beijing urban park[J]. J Beijing For Univ, 2017, 39(3): 93-104.
    [9]
    RENTERGHEM T V, BOTTELDOOREN D, VERHEVEN K. Road traffic noise shielding by vegetation belts of limited depth [J]. J Sound Vib, 2012, 331(10): 2404-2425.
    [10]
    ARNOD T. Numerical experiment to revisit micrometeorology and sound speed calculation in forests[J]. Meteorl Atmos Phys, 2010, 107(3): 103-108.
    [11]
    SUN Wei, WANG Weilu, GUO Xiaoping, et al. Comparison on attenuation effect of green belts with different types on traffic noise[J]. J Plant Resour Environ, 2014, 23(2): 87-93.
    [12]
    WANG Hui, GUO Jinping, ZHANG Yunxiang, et al. Research on noise reduction effect of highway green belt and its influencing factors[J]. Ecol Environ Sci, 2010, 19(6): 1403-1408.
    [13]
    XU Fei, QIU Erfa, WANG Cheng, et al. Structural characteristics of different types of rural water bank forests in Fujian Province[J]. For Sci, 2011, 47(9): 173-180.
    [14]
    QIE Guangfa. Study on Urban Forest Structure and Spatial Development Potential in Beijing Built-up Area[D]. Beijing: Chinese Academy of Forestry, 2006: 14-15.
    [15]
    CHEN Jishen. Study on mixed forest construction and its mechanism[J]. Jiangxi For Technol, 2001(2): 26-28, 34.
    [16]
    WEI Ruping, XUE Li. Research progress of mixed forest[J]. Hunan For Technol, 2002(3): 78-81.
    [17]
    OW L F, GHOSH S. Urban cities and road traffic noise: reduction through vegetation[J]. Appl Acoust, 2017, 120: 15-20.
    [18]
    DU Zhenyu, XING Shangjun, SONG Yuming, et al. Study on the attenuation effect of highway green belt on traffic noise[J]. Ecol Ecosyst, 2007, 16(1): 31-35.
    [19]
    LI Mengmeng, KANG Jian. Plant species selection based on leaf vibration experiments[J]. Mater Sci Eng, 2018, 371. doi:10.1088/1757-899X/371/1/012038.
    [20]
    ZHOU Jianhua, SUN Tianzong. Remote sensing model research of living vegetation volume and estimation of greening environmental benefits[J]. Environ Remote Sensing, 1995, 10(3): 162-174.
    [21]
    LIU Changfu, HE Xingyuan, CHEN Wei, et al. The living vegetation volume estimation of Shenyang urban forest[J]. J Beijing For Univ, 2006, 28(3): 32-37.
    [22]
    SUN Xiaomei, GOU Ping, HUANG Yanqing, et al. Research on living vegetation structure of urban forest in Dalian built-up area[J]. Environ Sci Technol, 2014, 37(6): 440-443, 452.
    [23]
    WANG Dongliang, JIN Hexian, FAN Likun, et al. Distribution characteristics and influence factors of living vegetation volume in artificial green space of nursing home[J]. J Zhejiang A&F Univ, 2013, 30(4): 529-535.
    [24]
    BARBIER E B, KOCH E W, SILLIMAN B R, et al. Coastal ecosystem based management with nonlinear ecological functions and values[J]. Science, 2008, 319(5861): 321-323.
    [25]
    DAKHIA K, BEREZOWSKA-AZZAG E. Urban institutional and ecological footprint: a new urban metabolism assessment tool for planning sustainable urban ecosystems[J]. Manage Environ Qual Int J, 2010, 21(1): 78-82.
    [26]
    BOLIN K. Prediction method for wind-induced vegetation noise[J]. Acta Acust Unit Acust, 2009, 95(4): 607-619.
    [27]
    DEEPAK S, AMIT P, SRIVASTAVA A K, et al. The effects of meteorological parameters in ambient noise modeling studies in Delhi[J]. Environ Monit Assess, 2013, 185: 1873-1882.
    [28]
    SHEN Jianzhang, HONG Wenjun, XU Yanjie, et al. Research on noise reduction effect of highway greenbelt[J]. J Green Sci Technol, 2017(22): 27-30.
    [29]
    CHEN Long, XIE Gaodi, GAI Liqiang, et al. Research on noise reduction service function of road green space: taking Beijing as an example[J]. J Nat Resour, 2011, 26(9): 1526-1534.
    [30]
    ZHAO Ming, SUN Guiping, HE Xiaodi, et al. Studying on environmental effect of urban forest along the grand canal in Yangzhou[J]. J Shanghai Jiaotong Univ Agric Sci, 2009, 27(2): 167-170, 176.
    [31]
    ZENG Yang, GUO Xiaoping, LI Yuke, et al. Spatial variation rule of noise reduction effect of three configuration modes of greenbelts in Beijing City[J]. J Plant Resour Environ, 2017, 26(2): 68-75.
    [32]
    GUO Zhongfu, NI Yongzhou. Study on a spatial construction model of forest belts for noise reduction[J]. Adv Environ Prot, 2013, 3(4): 107-110.
    [33]
    van RENTERGHEM T, ATTENBOROUGH K, MAENNEL M, et al. Measured light vehicle noise reduction by hedges[J]. Appl Acoustics, 2013, 78: 19-27.
    [34]
    PATHAK V, TRIPATHI B D, MISHRA V K. Dynamics of traffic noise in a tropical city Varanasi and its abatement through vegetation[J]. Environ Monit Assess, 2008, 146: 67-75.
    [35]
    GUO Xiaoping, PENG Haiyan, WANG Liang. The effects of traffic noise attenuation by green belts[J]. J Environ Sci, 2009, 29(12): 2567-2571.
    [36]
    ZHANG Zhiyong, LI Quanming, NAN Hailong, et al. Study on noise attenuation of green belts in plain area[J]. For Res, 2017, 30(2): 329-334.
    [37]
    ZHANG Qingfei, ZHENG Sijun, XIA Lei, et al. Noise-reduction function and its affecting factors of urban plant communities in Shanghai[J]. Chin J Appl Ecol, 2007, 18(10): 2295-2300.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(4)

Article views(2455) PDF downloads(241) Cited by()

Related
Proportional views

Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta

doi: 10.11833/j.issn.2095-0756.2020.02.008

Abstract:   Objective  Under the rapid development of urbanization, the impact of pollution caused by urban traffic noise on the living quality of urban residents has been increasingly recognized. Among many solutions to noise reduction, the green belts on the city roads enjoy the unique advantage in the reduction of traffic noise. The order is to provide references for the selection of measurement index of the noise reduction ability of the urban green belt, and give suggestions on how to achieve the optimal noise reduction effect of the urban green belt construction.  Method  This research studies the road forest belts on the major traffic roads of 11 areas (counties, cities and districts) in the Yangtze River Delta and uses the comprehensive comparative analysis of the ratio of different forest belt types, living vegetation volume and the under branch height to conduct a preliminary evaluation on the noise reduction of green belts.  Result  The noise reduction of green belts on the major traffic roads in Xuanwu District of Nanjing and Runzhou District of Zhenjiang are most effective among the 11 areas (counties, cities and districts), while those in Lianyun District of Lianyungang and Qingyuan Town of Lishui are least effective. Rationally mixed forest of arbor and shrub is better for the noise reduction. The results of the simulation model indicate a positive relationship between additional noise reduction of 11 areas (counties, cities and districts) and the living vegetation volume obtained from statistics.  Conclusion  From the comprehensive analysis of the combination of the living vegetation volume and the under branch height, it could be concluded that the effect of noise reduction within the range of 2 m of the under branch height is better.

LI Yanan, HUANG Shaorong, Geriletu, YAN Lijiao. Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta[J]. Journal of Zhejiang A&F University, 2020, 37(2): 251-258. doi: 10.11833/j.issn.2095-0756.2020.02.008
Citation: LI Yanan, HUANG Shaorong, Geriletu, YAN Lijiao. Noise attenuation ability and its affecting factors of green belts of 11 areas in the Yangtze River Delta[J]. Journal of Zhejiang A&F University, 2020, 37(2): 251-258. doi: 10.11833/j.issn.2095-0756.2020.02.008
  • 城市环境噪声污染,尤其是交通噪声污染,对于城市居民的正常生活有着重要影响,城市化的飞速发展导致交通噪声成为城市噪声最主要的来源[1]。国内外学者对于降低交通噪声进行了多方面的探索和研究[2]。在诸多降噪方法中,植物除了能够达到有效降噪目的外,还兼有滞尘、降温与持水等作用,同时可以提升城市美感与居民幸福感[3-5],具有一定心理降噪作用[6]。目前,对于城市林带降噪的研究都集中在某个或某几个公园或者某段公路林带在不同噪声频率、植被类型以及林带宽度对林带降噪影响方面的研究[7-10],尚无在较广区域范围结合林带三维绿量等参数进行道路林带降噪方面影响的研究。本研究选取长江三角洲地区11个县(市、区)作为研究对象,评估样地交通干道绿化带主要植被组成以及降噪能力,分析林带三维绿量与枝下高等参数对于绿化带降噪能力的影响,进而提出对于城市道路林带的选择建议。

  • 选取长江三角洲地区4条纬度带(34.5°N、32.0°N、30.0°N、27.5°N)上包括绍兴诸暨市、杭州淳安县、杭州富阳区、宁波余姚市、连云港连云区、徐州丰县、上海崇明岛、南京玄武区、镇江润州区、温州苍南县、丽水庆元县等11个县(市、区)。长江三角洲地区属于亚热带季风气候区,四季分明,土地及森林资源丰富,经济发展迅速,人员流动量大,随之而来的空气、噪声等城市污染问题日趋严重。

  • 2015年6-10月, 在研究区域建成区的交通干道上采用机械取样的方法,根据实地情形在每个县(市、区)选取10~20个样地,共149个10 m × 10 m样地。样地宽度的选取参考孙伟等[11]、王慧等[12]关于林带宽度在降噪功能方面的研究,林带的划分参考许飞等[13]、郄光发[14]在城市林带方面的研究以及《城市绿地分类标准》(2012年由国家建设部颁布)对于城市森林的分类方法,样地林带类型的划分参照陈际伸[15]、韦如萍等[16]对于混交林营造机理的研究、样地现场平均植株高度以及LY/T 1812-2009《中华人民共和国林业行业标准》(2009年由国家林业局颁布)。

  • 目前,国内外对于城市或城郊道路林带降噪效果的研究主要集中在植被对不同频率噪声的吸收效果,以及植物配置模式、林带宽度、叶片形状与质量等物理参数对林带降噪效果的影响等方面[17-19]。噪声的衰减效果会因植物表面显微结构及纹理不同而有差异,故而同种类型的植被在不同生活阶段对噪声的衰减作用也不尽相同。三维绿量(living vegetation volume,LVV),也称立体绿量,是结合乔木冠幅、胸径等参数计算得到的综合指标,能够描述植被空间结构和定量研究城市森林与环境之间相关关系,对于林带结构差异描述更为确切。引入三维绿量衡量林带降噪效果的影响,可以在一定程度上消除用同种类型的林带降噪率计算公式带来的误差。乔木的单株三维绿量为树冠绿量与冠下绿量之和,样地三维绿量由单株三维绿量累积获得,一般根据树冠形状来确定三维绿量计算公式[20~22]。本研究植被树冠类型由调查获取,同时综合参考中国植物志(http://frps.iplant.cn)、The Plant Listhttp://www.theplantlist.org)。研究区植被树冠类型与其对应的三维绿量计算公式如表 1所示。卵形树冠的三维绿量s为树冠绿量s1与冠下绿量s2的和,其他树冠类型不计冠下绿量。灌木、草本的三维绿量计算公式参照王东良等[23],以盖度与株高的乘积作为结果。

    树冠形状 树冠绿量计算公式 冠下绿量计算公式 树种
    卵形 s1x2y/6 s2d2h/4 女贞Ligustrum lucidum、珊瑚树Viburnum odoratissimum、樟树Cinnamomum camphora、无刺枸骨Ilex cornuta、悬铃木Platanus orientalis、桂花Osmanthus fragrans
    圆锥形 sx2y/12 不计冠下绿量 杜英Elaeocarpus decipiens、银杏Ginkgo biloba、龙爪槐Sophora japonica、广玉兰Magnolia grandiflora、水杉Metasequoia glyptostroboides、黄山栾树Koelreuteria bipinnata、合欢Albizia julibrissin、鹅掌楸Liriodendron chinense、茶花Camellia japonica、鸡爪槭Acer palmatum
    圆柱形 sx2y/4 不计冠下绿量 垂丝海棠M. halliana、龙柏Sabina chinensis、枫杨Pterocarya stenoptera、石榴Punica granatum、栀子Gardenia jasminoides、海棠Malus spectabilis、连翘Forsythia suspensa、夹竹桃Nerium indicum、构树Broussonetia papyrifera、木槿Hibiscus syriacus
    球形 sx2y/6 不计冠下绿量 海桐Pittosporum tobira、金边黄杨Euonymus japonicus
      说明:x为平均冠幅(m),y为平均冠高(m),d为平均直径(m),h为平均枝下高(m)

    Table 1.  Crown shape of plants and their calculation formula of LVV

  • 要得到更为可靠的研究结果,降噪模型需选取能够综合考虑林带各种林分参数的多变量非线性模型,并且该模型的研究区域最好能够与本研究区域具备相近的地理位置与相似的自然环境条件[24-27]。本研究采用沈建章等[28]在浙江长宜高速路段不同树种构成的水平空间上对于交通噪声衰减作用的实验得出的绿化带噪声衰减拟合模型,计算得到研究城市样地绿化带噪声衰减值。绿化带宽度l与其附加降噪量Q之间的关系为Q=ab-el+c,其中:参数abc的值如表 2所示,e为常数。对于乔木林附加降噪量结合乔木种类、叶形、枝干等特征参照水杉Metasequoia glyptostroboides林和桃Amygdalus persica林的计算方法进行。

    林带类型 参数
    a 1/b c
    空地 -9.54±0.13 10.3±0.37 9.53±0.13
    乔灌混交林 -32.5±1.12 12.0±1.03 32.7±1.13
    乔木混交林 -17.3±1.19 16.1±2.48 17.3±1.28
    灌木混交林 -32.0±1.07 19.2±1.31 31.9±1.15
    水杉林 -15.8±0.37 14.2±0.79 15.7±0.39
    桃林 -24.8±1.64 15.5±2.32 25.1±1.74

    Table 2.  Simulation model parameters of noise reduction of green belts

  • 用Excel和SPSS 25.0统计分析软件,使用Pearson相关性分析法对于研究区样地三维绿量(LVV)与附加降噪值之间的相关关系进行分析。

  • 用SPSS 25.0统计分析软件做Kruskal-Wallis秩和检验,对于绿化带不同枝下高范围与附加降噪量间进行多样本比较。

  • 表 3所示:在长江三角洲地区11个县(市、区)的道路林带调查样地中,除绍兴诸暨市无乔木混交林外,其他全部都有乔灌混交林、乔木混交林以及乔木林这3种林带类型,仅绍兴诸暨市有灌木混交林,徐州丰县有灌木林。根据不同绿化带配置对于降噪效果影响的研究[29-30],乔木和灌木的合理搭配形成的多层次结构有利于形成良好的降噪面,故而乔灌混交林占比达到80%的南京玄武区、镇江润州区具备较好的降噪条件。而乔灌混交林占比低于30%的连云港连云区、丽水庆元县、杭州富阳区、杭州淳安县等地相对而言降噪条件较差。

    城市 乔灌混交林 混合乔木林 乔木林 混合灌木林 灌木林 乔木枝下高/m 冠幅/m 乔木胸径/m
    绍兴诸暨市 杜英-女贞,樟树-石楠-珊瑚树(50.0) 无(0) 樟树,悬铃木(45.0) 女贞-珊瑚树(5.0) 无(0) 0.8~2.6 0.5~8.0 0.08~0.33
    杭州淳安县 樟树-龙柏,红花檵木-金叶女贞-月季(27.3) 樟树-桂花;杜英-樟树(40.9) 樟树,悬铃木,桂花(31.8) 无(0) 无(0) 0.8~3.0 1.0~10.0 0.08~0.35
    杭州富阳区 樟树-红花檵木-栀子,杜英-樟树-红花檵木(23.5) 鹅掌楸-樟树;樟树-茶花;杜英-樟树(58.8) 枫香,鹅掌楸(17.6) 无(0) 无(0) 0.1~5.0 0.7~8.0 0.05~0.39
    宁波余姚市 樟树-小叶女贞-红花檵木,杜英-枫杨-红花檵木(40.0) 樟树-杜英;樟树-广玉兰(25.0) 合欢,悬铃木;樟树(35.0) 无(0) 无(0) 0.5~6.0 0.6~6.0 0.02~0.44
    连云港连云区 悬铃木-小叶女贞-紫薇(20.0) 樟树-银杏,桂花-樱花,朴树-合欢(60.0) 樟树,悬铃木(20.0) 无(0) 无(0) 0.3~3.5 0.8~6.0 0.02~0.38
    徐州丰县 悬铃木-女贞-紫薇,银杏-女贞-石楠(40.0) 悬铃木-杨树(10.0) 白蜡,悬铃木(40.0) 无(0) 女贞(10.0) 1.1~4.0 0.5~6.5 0.05~0.31
    上海崇明岛 樟树-悬铃木-瓜子黄杨(50.0) 悬铃木-樟树;樟树-圆柏(30.0) 樟树(20.0) 无(0) 无(0) 0.8~3.5 1.0~7.0 0.06~0.38
    南京玄武区 悬铃木-女贞-红花檵木,水杉-雪松-珊瑚树(80.0) 悬铃木-石楠(10.0) 悬铃木(10.0) 无(0) 无(0) 0.5~7.0 1.0~7.0 0.06~0.40
    镇江润州区 悬铃木-石楠-女贞,樟树-桂花-瓜子黄杨(80.0) 悬铃木-雪松(10.0) 悬铃木(10.0) 无(0) 无(0) 0.6~4.0 0.5~6.0 0.05~0.56
    温州苍南县 白兰-榕树-紫薇,黄山栾树-红叶石楠-紫薇(30.0) 广玉兰-榕树(10.0) 悬铃木,樟树;白兰(60.0) 无(0) 无(0) 0.5~3.5 1.2~8.0 0.06~0.29
    丽水庆元县 樟树-瓜子黄杨-檵木(20.0) 广玉兰-杜英(10.0) 杜英,悬铃木;樟树(70.0) 无(0) 无(0) 2.0~4.0 1.3~8.0 0.13~0.34
      说明:括号中数据为各林分类型占比(%)。石楠Photinia serrulata.红花檻木Loropetalum chinense var. rubrum、月季Rosa chinensis, 紫薇Lagerstroemia indica.瓜子黄杨Buxus sinica, 雪松Cedrus deodara, 白兰Michelia alba.榕树Ficus microcarpa、红叶石楠Photinia × fraseri.槛木Loropetalum chinense.鹅掌楸Liriodendron chinense、櫻花Cerasus serrulata、朴树Celtis sinensis、杨树Papulus、圆柏Sabina chinensis、枫香Liquidambar formosana、白蜡Fraxinus chinensis、金叶女贞Ligustrum × vicaryi.小叶女贞Ligusrum quihoui

    Table 3.  Structural parameter, types and proportion of the green belt

  • 几种不同类型降噪林带在10 m宽度范围内其宽度与附加降噪量之间的相关关系如图 1所示。在相同宽度下,乔灌混交林的附加降噪值要明显高于其他类型林带。在宽度小于10 m范围内各类型林带降噪效果由高到低依次为乔灌混交林、灌木混交林、以桃为代表的落叶乔木林、以水杉为代表的落叶乔木林和乔木混交林,整体在10 m处呈现最佳降噪效果,附加降噪量随着宽度值增大而增大,呈现逐渐变缓趋势。

    Figure 1.  Correlativity between the additional noise reduction and width of green belts

  • 用皮尔森相关性分析法对样地三维绿量与附加降噪值之间的相关关系进行双变量相关性分析,采用双侧检验,结果如表 4所示。对于11个县(市、区)主要道路林带共计149个样地的三维绿量与其附加降噪量之间的相关关系分析可得,研究地林带三维绿量与附加降噪量之间呈正相关关系,且在0.05水平(双侧)上相关显著。

    项目 三维绿量
    皮尔逊相关性 显著性(双尾) 个案数
    附加降噪值 0.195* 0.017 149
      说明: *表示在0.05水平相关显著(双尾)

    Table 4.  Correlation analysis between the additional noise reduction and living vegetation volume

    根据机械取样和典型取样相结合的方法选取10个样地进行总三维绿量与平均附加降噪量的统计,结果如图 2所示。丽水庆元县的总三维绿量值高达17 336.59 m3,其附加降噪量却只有12.56 dB,相对偏低,这可能与其道路林带类型中乔灌混交林占比低有关;南京玄武区和镇江润州区2个地区道路林带的附加降噪量最高,达16.87 dB,其中镇江润州区的三维绿量值只有9 968.05 m3,这2个地区的乔灌混交林占比也在11个县(市、区)里最高。由此可见,林带降噪能力要结合三维绿量与绿化带类型进行综合判断。

    Figure 2.  Living vegetation volume and average of the additional noise reduction

  • 将149个样地中的74个乔木林以及乔木混交林样地根据枝下高整体数据分布分为0~2,2~3和>3 m 3个数据梯度范围组。将3组枝下高范围与其所产生的附加降噪量间做Kruskal-Wallis检验后得到渐近显著性(P=0.00<0.01),从而得出3组不同枝下高范围林带的附加降噪量不同的结论。进一步进行两两比较,结果表明:道路林带中乔木林以及乔木混交林可提供的附加降噪量在枝下高范围为0~2和2~3 m之间(P=0.00<0.01)以及0~2和>3 m之间(P=0.00<0.01)差异显著;在2~3和>3 m范围内没有显著差异(P=0.109>0.01)。而枝下高在0~2 m范围内的林带三维绿量均值要小于2~3 m和>3 m的林带,原因是植株矮小,相应的冠幅、直径都小。有研究[31-32]显示:在距离噪声源水平距离相同、测点高度在1.2 m左右的水平下,高度与分枝越低,绿化带的降噪效果越好。结合本研究可得:道路林带的附加降噪量在枝下高>2 m后不会有显著差异,在<2 m的情况下,枝下高越小降噪效果越好。

  • 植物对声波具有衰减作用,衰减主要通过植物表层纤维、气孔等结构吸收,转化声波为植物的阻尼振动和反射[12, 33-34]。本研究引入三维绿量作为衡量林带降噪能力的指标,对长江三角洲地区11个县(市、区)的149个交通干道绿化带样地的三维绿量进行统计。在本研究区的149个样地三维绿量与其附加降噪量间呈正相关关系,这与曾旸等[31]对北京地区绿化带降噪效果探究得出的在0.5和1.5 m处绿化带的单位面积三维绿量与附加降噪量间呈正相关的结论相似。

    综合分析林带配置类型、三维绿量及枝下高参数,发现总三维绿量值高的区域,其平均附加降噪量不一定高。结合前人在林带降噪方面的研究以及前面对于不同地点林带类型及占比的分析,三维绿量在衡量林带降噪能力方面尚存在一定缺陷。究其原因,在三维绿量的计算过程中主要涉及到植株的冠幅、冠高与枝下高,而越高大的植株,其这三方面的值越大。但枝下高作为影响植物降噪效果的一个重要因素,其值越小越有利于林带降噪[32, 35],需进一步对研究地林带平均枝下高与其降噪量间进行分析,不能仅用单一指标,这与张志永等[36]和张庆费等[37]研究结论一致。对枝下高与附加降噪量做K-S检验,得到2 m是枝下高这一参数能够影响附加降噪量的一个临界值,这与孙伟等[11]的研究结果相近。

    根据长江三角洲地区11个县(市、区)交通干道绿化带的配置类型以及占比分析得到,南京玄武区、镇江润州区的交通干道的绿化带中乔灌林占比较高,具备良好降噪环境。连云港连云区、丽水庆元县、杭州富阳县、杭州淳安县等地的道路绿带乔灌林占比较低,不利于降噪,故而应提高这些地区道路林带的乔灌林占比。城市道路林带对于噪声的衰减作用与林带配置类型、三维绿量以及枝下高密切相关,林带具备良好降噪效果需同时满足具备合理的乔灌配置、较高三维绿量值、乔木林与乔木混交林的枝下高小于2 m等条件。

    本研究仅利用样地林带的冠幅、胸径、枝下高等基本参数进行较为基础的研究分析,由于林带在组成以及结构方面都较复杂,还需增加合理的监测研究。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return