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Abstract: Let G be a simple graph with n vertices and A, ( G ) be the least eigenvalue of G. If G
is a unicyclic graph with n vertices, G is the graph obtained by joining each vertex of C3 to a

vertex with degree one of Pi-1, Pk —1» Pi—1s respectively, where k = ki = ko= 1, k— k2 <1,
k+ki+ ky= n, then ,,(G)<< X, (G ") and the equality holds if and only if G =G .
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