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Abstract: Water is an important component in plant cells with plant aquaporin being the major protein for
water transport in and between plant cells. As a subfamily of plant aquaporins, the plasma membrane intrinsic
proteins (PIPs) located in the plasma membrane are classic, high water, selective channel proteins. This pa-
per focuses on recent advances in the molecular biology of PIPs concerning structural characteristics, biologi-
cal function, and a regulation mechanism. PIPs possess two highly conserved domains: GGGANXXXXGY and
TGI/TNPARSL/FGAAI/VI/VFWF/YN. PIPs can also be divided into two phylogenetic subgroups named PIP1
and PIP2. PIP1 possesses longer N terminal sequences and shorter C terminal sequences than PIP2 with con
served amino acid sequences respectively. Studies of transgenic plants and expression in Xenopus oocytes cells
indicate that PIPs not only may facilitate transport of water and small neutral solutes like CO, and glycerin,
but they also possess many physiological functions. The functions of plant aquaporins are regulated by many
factors including post-translational modification, heteromerization, pH value, and divalent cations. These re-
sults indicated that PIPs act as a pivotal role in water and small neutral solutes transport in plants. [Ch, 1 tab.
51 ref. ]
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ARGy AROTERYIRN A 3 Fagie . FUOMARE | RARREME A REE, 52 Fhges han
M BN AR AR, Ko s A 3 Ay, aE kiR N2 (BB I B B Boz e I s R
) 32 i RN 3 1o K 2R 1 (WRRKFLEE L, aquaporin, I FK AQP) B shiz '™, S [A] A AR 4 88 A [R] /4
AHRES, Hazkis gzt i T Re 2200 . 1 EZ N ZESE 1T (membrane intrinsic protein, MIP) K%
TR D1 22—, AKGE T8 8 A R T K 3 FHAb N 7 Bon it S AL R S S s e, S5 T YK >
BB s i . A S P R AR L S fLizsh, Fhrii kAR A E LR, R AQP 1Y & i [
JF A0 R J5 M A5 A R AR, H AT E R AR AQPs 0o 5 2. 7 TR LB INTESR I (plasma mem-
brane intrinsic proteins, PIPs), X 143 >A PIP1 Fl PIP2 028 A6 W 9 I A 9 7 JI55 PN 7 85 H (tonoplast
intrinsic proteins, TIPs), X/ o-TIP, B-TIP, v-TIP, §-TIP Fll &-TIP % 5 E2; 7716 T A= Ay 2
P A 8 BRI | 928 Nod26 I P4 78 2 1 (nodulin 26-like intrinsic proteins, NIPs); /INg3—F 8 B P9 7E 85 H
(small and basic intrinsic proteins, SIPs), 434 SIP1 1 SIP2 W25 ; 28 GlpF (glycerol facilitator) & N 7£ 25
1 (GlpF-like intrinsic proteins, GIPs)®"%  EK3j#% Sphaerotheciella sphaerocarpa &N 41 R HA PIPs, TIPs,
NIPs, SIPs Fll GIPs %% 5 2 AQP %), £ HA HIP (hybrid intrinsic proteins)fil XIPs (X intrinsic proteins)2
G, BHRE, HIP Uk BT ER BT &% rf 10 XIPs 36 77 7E T 2 FpoRUF- R4 v AR S 3 8 X6 A ) o g
PWAERR 1 PIPs M Z5 R REAE | AE 3 Ty B8 R 4% AL ) 55 5 1 1 F 5% i R 2R A7 A4

1 JRENEE G PIPs By 4 1 FH4E

PIPs B0 TIRAE R |, BT A 1Y PIPs ¥ BEORSF, SHMF IO SLIE M S B0 i & 7K 4y
PEFEMEEE B . TEATA S SRR PIPs ) AFAE 2 4 BELRSF I X 8. GGGANXXXXGY il TG/
TNPARSL/FGAAI/NI/VFWF/YN, 23504 F C 3 F E 5, FRES PIPs ThREM4E R4 %, PIPs 434 PIP1
FIPIP2 W28 12 3 4 X 0 FE N-oit Il C=di (R[] 12 PIP1 L PIP2 ELAHK (1) N-dii AR S () C—3i
1 ELAE 7 51 224 v & A7 A B 9 AR ST 2 R

2 JE N AEE A PIPs 3 6
PTPs ALK RPN T ik st B 11, FIRHE B V2 mIRe, B KL ieEr (E 1),
$1 REATEEANSHESER I

Table 1 Structural characters and function of the plasma membrance intrinsic proteins

WKE AWK e — 1 Y 5 AL RE EE PN
PIP1  NtAQPI /K’AH‘“H’ A Z(GA), Bk (ABA) *%:%/kﬁgiﬁf fig LAERE T [15-17]
IRE, Ak isgl, AR, SeAER
PsPIPL; 1 Hl, HZEBR KA TR K [18]
AtPIP1;2 7k Wk, GA, ABA, pH {fi % i 2 ML 7K 533 i [12, 19-21]
ZmPIP1;1 A A 0 2] BRI, PIP WALY) TR AL E N oAl [22-24]
ZmPIP1;2 A A I 5] PIP WA 1 55 2R Ak F N oAl [22-23]
PIP2  AtPIP2;1 K pH A6 78 5 i A% A6 ) ) [20]
AtPIP2;2 Kk pH #6538, + 2 MR FR B3 K 4 is i [20, 25-26]
ZmPIP2;1 7K kR ik, PIP AL R R4k R K 5312 i [22-23]
SsAQP2 Kk B, IR INIFIZ B) [27]
HvPIP2;1 7K, —4Ukek Rz AR R4k [28]
SoPIP2;1  Jk BEMR AL, FTAMAOK I pH MM AL EE 8T 408 T [29-31]
2.1 PIP1

TERARGIT Arabidopsis thaliana 11, %% PIP1 Z [RI( 2 B8 7 9 B A 90%AHRIERY, 48 PIP1 fEIE+55
PRI RE DAY Z FE R AR A 5 PIP2 U™, (H AT TAY 2 2 MR TE 40 i vh B9 A= )22 T RE AN SR ARTR] A Sy Jo e
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PIP1 RIGEM 51 2 —, M Nicotiana tabacum NtAQP1 33K T 51 EAR K /il T R, R IR = 1)
PURMENT, X SEEERAE IR I PIP1/PIP2 2 LB BB 5E th A3 3 TIESEDY, TEBE T Pisum sativum
T B, PIPT FENIOK 73 TR B 7 AR H HZE/E ™, B2 PIP1 76 Xenopus oocytes BB £k
200 e G 3R 3k 2R G 1) e U5 8 v U S s A L I A K G P R PIP2 R IE K AT Y
REJJLE PIP1 RG22, PIP1 BMR/K Jris i fe 1, AFEA YA B 1) — R K r iz bl 872 H
THTUE B R0 L 53 95 R 08 RGN BEXT B AT IEFI R BIE . 78 . e BRI ST, HIA R, fES
T 0L B /N B A Hh . AR (CO,) 3B B MR T 1S SIS 5 IE B NtAQP T E IR
s 1R 200 2 3k i B AT s i A A e B D REDS . KON RE AN T NtAQPT B9 cRNA AR 152 1T 86 (5 92
T ik 1) 20 R 2 I AR Bk % A6 O HCOy), PRI, bk 7 b WA s s i B A, N80T
AL pH (EREARE, BB, B NCAQPT 1 JTUME DR 240 M — A Ab il W S0 i L X BB 1 45%, — %R
Bk 1z i D RE e RO AE AN AQPT Hh R BRI ELIE I 5 /K Gl 18 2 1 Al A REA OCG,  TTAS 2 JEE i 2 A
823 S A A G Al 5 AT A 3 05 0 TOWE B 200 i — S A B 15 328 IR WA H 52 g 0

W& AQP 7Esh ¥ b/ T — A Az i i A= BEAL AN W i 45 B 90 0E, A 5S¢ AQP TR b/ ¢ — 4 Ak
Bz i 1 2 AL A o B R BV R L TR R IR AQP FE LD RE Bl S AR AQP F PR 5 1 ifF 5 v R IR
BT B0 K G i AR S A B Y 6 S AU SE M e 2 AR vk BE Y SA A 7R (HeClL) AL B %2 52 Vicia fa-
ba B 5. Phaseolous vulgaris BB RN R ELET, HBE KB B TR T 70%~80%, 5B A 1 H [
SE AR BE 3 R AU A B DA A L) B 2 i 3 I A A R S5 1 T R LS R R T X SR A ) i a1 A
I I JEE e ope SRR ) K O T A R W AR AR, TEA R RAFSRAFTT, i SRA R IT AtPIP1 ;2 IR
FOA] LA B AR I R B SL R EAD A RCR™, IO R, TR T K s b APIPL ;2
B OCHRZH BG4y, BRI PIPT 7K GE 8 8 AU A K s i ohae, i H B A s /o 1 i sl A
DifE, 0 HvPIP1;3 I HvPIP1 ;4 REi8 i dl+,
2.2 PIP2

K38 38 £ 1 PIP2 S Z AT LE PIPL 32 i 7K 43 YRR T i o 7845 Fh AR FH TCHE BB 240 Jf B 1 B J5E 38
YER IR RIR RGP IR W], K8 & H PIP2 17K 7308 32 M Hor B 5~20 A5 144 ) —fRIF LT,
K38 38 1 PIP2 BAT 50 A0 2 AR sy P R B R i, 124> 1k, PIP2 M5 #9448 U AE AN ] /Y
Wb BA R F R A Y7 DhRE, JF CIEBTE A TAAR YDA [8] (0 A B R S 3 JE 3 SR /R ] . ok 2K 1
BEAATAERFR | P AR AR E ORI R S A K R B R 2 5K Y is

Chaumont 552\ E K Zea mays SO — DK 4 1 ZmPIP2, BIF5E A BEAE WS BB 240 i v 1% i
F ik ZmPIP2, Ky B PRl i 8 A% LA b o S Ak ok m] LA AT 39 40 4 K 8 B SR ZmPIP2 /Y DI RE .
Moshelion %7 )\ &2 #} Leguminosae i 28 Samanea saman ™ ¥ 4 M J< 1 5 f 2] — > PIP2 & 11 SsAQP2,
WEFER W], SsAQP2 933K $ i /K 70 & 1 20 A5 L L . Rl SsAQP2 ) 2 BE A 1 BE Bl S8 1k K BT #
17 HL AL BE 8 55 — Bk 233z fan 40 ) 0 AR B2 3R (phloretin) B4

MHRE NePIP2 ;1 S S5 A VAT A RN, B X AE kL & 767 b LK SRR EZ, efddE T
TR I3 A 240 6] s 2R R] 32 3 ), Mare S5 HOA A8 = PIP2 (19 RNAG R AR A G082 2 1 AR 20 A PIP2 (19 %€
P, fEMEM PR F R PIP2 MR IR B4 SXF AR, JHA PIP2 AURNAL AP 1 46 1l 7K
VEFHEENS , IR . PIP2 M5 AY A 5% 70 B i 4B B B A ROT 2 h 2 b 75 1Y

PIP2s R A L B K B B A bk, B4R S8 2 Solanum chacoense B9 ScPIP2A H Z A& 155, 1E
AETET A WD, BFEMHR A AERE | HERE . 2R R F B rhoR gk . A RE R B 5K K
RIEHLMIE A, ScPIP2A FEAK MR L h iR FUSRGA | BETER B AN n K i T e VE ™

Johansson %5 BV 3% 2% Spinacia oleracea W' v [ ) — A~ PIP2 25885 H SoPIP2;1, ‘B i F i F Joi i |
Tornnroth %5t — L WF5E R W], 8 SoPIP2; 1 2 J A0 A i i 38 38 14 T AT 2 1l 7 2 > 22 20 1R 5k i 1 1l
ML LB AT SRR . 2 D222 BRERHE 7350 J2 BT 3R B Y Ser'™ Fl C AR S i) Ser™, Ser'™ Z: B M1
J5, DAY Arg!™ Hl Asp™' Sl il 3 7K1 B S R S I EE R Arg"* (75 PIPs HH KPR ST ) Al Gly™ A1iE
WL BB EAEI D A E S N R 18 a-BRBE I, Ser'™ MIBERR LA D 42 5 N Rum &
4% FLAR . Ser®™ S54RI HURY Pro™ Al Led®™ E48E AL ETAE, MXEHAERRE, C AWML,
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FLR S Ser™ M4 AT (&7 (007 B 4% Leu'” EHEMIL B AEBUY . PISLITEBR 125 R HES0 1 ol g, 1858 5 /9 N
R s RE AR AT I Tl e 180° M I B A, T2 MUY Leu” JR4THF T /KGEA .

bR T iz oK 2 4h, /KiEE S A PIP2 Wagis i — A bk, 8 KE Hordeum vulgare 7K 38 18 £
HvPIP2; 1 7 KA Oryza sativa Wit 5 335 UE W PIP2 45 B T2 UF — A bmiis ™, A< L5 2
H I R B4 A 52 48 R ) 067 38 0 LU AR DR E B . R R 3. HvPIP2;1 5L BB UM G, RUIKH
M HvPIP2; 1 HAG A 1 — S Ak s S (0 1 . (F /G T8 2 9 100 3 3 R A Al 30 3 1 19 184 o 22 65 1S4
55 HvPIP2; 1 WD REA Kb A 1 T i — LAY

3 RMENEEE PIPs t i &4 4|

3.1 PIP1s

FIHAET A, PFFE AR TIPS Al NIPS B A B AL FENLE], H PIP1 20¥A XA Dhhg . B £ oK
Zea mays PIP1;2 7558 BE40 i b F2 3R 05, 3802 1 BORE A IR0 70 Sl 1R e 4 1 700 4 R RE HS I K 48
PERI{H PIP1 BHA B S B IIGE, Western 243845 W] PIP1 fEMR R AN Fr rh kR F, KT 28 kDa
(R 7K 38 8 8 T 2 AT AFEAR RANM D ek, (Bt i i b 208 Rak, AT BB iR T PIP1 f2 46 B
VRGP AN B R A SOE AL MR . B, 3Bk KGHE B B 5 R AR AR T X K 435 05 2R Y B2 e 1 I 9 3R
B, 58Tk PIPL A A, 2 4K PIPT 7 AU b 36 5k m DL fip L e a8 kP2 ax sl g SR gk —
RN T PIPT S R AT & R #E iz fi K 43 D fig /& b 75 1 o
3.2 PIP2s

T BH S TR pH B B 65 5 0 0 A P 2 Y s T A A AU T I T {4 R
A 2 RS A ) A 375 OG0 5 1) R A5 8 7 1T DA R A0 I S 38 4 5 LA b X4 SRt e 4l Ak 1 o
JIES 4 340 RS2 AL 436 06 B 1 1) I 4 (stopped flow spectrophotometer measurements ) H f5 2 IESE 78 38 e JF 4l
JEL PR R T S0 AT R AL BT AR A MRS K 305 3 R R A JTCHE BB A48 L PN S 05 R A 40 R T K G T AR
pH {E F S EOK /BB ERFIRAIF R R, KEEE AWM EH 2 W, JERGBFFEIEN . 7
AtPIP2;2 2R FR L D ¥R 197 {7 2 KL M 9 ff 2 R F2 22 %) pH IR s 097 76 AtPIP2;2 [ 45 F i 1 rh 7
i FAk His", 380D ALY &, SIRE AR EH . Tornroth 55 B 57~ , FEME KM T
il ST A8 20 A BT 1 pH BT %, PoPIP2;1 1Y His™ 58 5L (FE PIPs /™8 A7) & & A F 1k, 4 His"™ 5%
S A, 2 SR AR IR M4 1) B — e RE M E 5 Asp® R L (1 PIPs W Asp B Glu ZRIE R SF ) Z (0] JE
BT . TEX — iU, BT Ser' FRELMBERR L2 1y . i A BT AR A4 D BRAlE T N R b AE
FAAS LKA, KGE T8 28 1 M T — 8% D SRNE, i Leu'’, Pro™ Fl Val'™ 58347 20 fH %€ T /KA

BT LR UL AN, PR (2 R AL AL RE R K I A A i D RE S S T g 2 R AL X K i
A PIPS DIRERY 52, AN[RI Y PIP1s F1 PIP2s 78 JTUME DF-RR 240 i v 33k =20 piF s R W], A KKl
T 3 ng PIP2 ) cRNA, [AEHJT 3~12 ng A9 PIP1 cRNA B89 $2 =5 /K (3 iV . 3 i #4 2 PIP1-GFP 2%
i, FEEFB AR R PIP1 35 I R A W WIGaR . Soppiss R, K2 HvPIP2 AALTE JTUHE BB 41 it v 2
M IR B % KGE T 5, i ELZE HvPIP1 A1 HyPTP2 33k ik 3% % 25 B4 i 51 /K 433 178 e (10 13 5 ]
AEJZ B TIE 8 PIP1 1 PIP2 A SR 2 A, 38 i AT JZ P B ARt R T BT AH BEAE R . Lt PIP
M PIP2 AT &, W9 T E A Z AR, M 17K iy &

ZmPIP1 ;2 FUANIR] (1) ZmPIP2 7 JTUE B EE A M v 33838 | IR [6) 2 G 7 /G 18 25 115 M 230 3R IR v
VR AT, 3k AT RE 2 ot e )/ 4 5 A 25 510 R HISE RUZHTUESE T ZmPIP1 ;2 Fl ZmPIP2 [H] (4 9 3 .
VES BT T 55U 00 R A ZmPIP1;2 B R 3R 2, R4 ZmPIP1;1 Al ZmPIP1 ;2 78 537 2% ik B I PR 3G
A Y e F AR IR PR R . ZmPIP1;2 F1 ZmPIP2 ;5 3 3¢ ok th 42 i /Kl i & (1 16 0, {2 ZmPIP1;1 Al
ZmPIP2;5 Z [0 R WL EAE, fEX SRR H, ZmPIP1;1LE RAMA K FI/E S ZmPIP1;2 MF . B
ICHEWT , ZmPIP1 7E3X %6 55 Y5 DU SR A T4 7 18 ) RE I 2 o AN ] A 1Y

PIP1 #l PIP2 WA JL-PAAAE TR A M H A8 B AR R A, XS ) 288 5 BA 58 2 AT
IEASFARRDIRE, W, XTKE A bz, P, AS[F AR 4 M2 A R R 17K 23 53R S 3
PE, K E A DI RE AR A A A S S A TR EEOR ] AR — e 5 4 PIP RTRE Y /N> T
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Yy sl AR IS F il T, TAEAR R Pk 28 PIP AT LA i 18 i a5 At K e 1 S R LA TR B 5z K oy
e, T XIS UE W K vk PIP .2 af R 2 3 AR B AMA K Jpas g i) 28k 42, Nt g A
(] A R P AL, AT T R P RE G0 Ao 4%l 2 281 40 )iz A A 11 38 2 R WD A bl 3 AR AR g

4 RZ

FAT, AMTX PIP MBFFEEZ LR, B TEA 2ROk E 8 H 250K 70 F/N 1) 50 iz
EANTZ IR B S R LB AR 32 i K o0 RN 7 W) B PR HLRE A Fp i — 22 Bk, IR, W /Ko
I BRSO AT, TR R A ITEA Y AR O & B v i A= )2 D RE 2 s K T 1 2 T Y
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