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Recent advances with auxin response factors (ARFs): a review
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Abstract: Auxin response factors (ARFs) are important transcription factors which regulate the expression of
auxin response genes in plants and which take on an important role in auxin signal transduction. ARFs can
bind specifically to a TGTCTC motif (auxin response element) and mediate auxin responses including activating
or inhibiting gene expression. Based on recent advances in the molecular biology of ARFs, structural charac-
teristics as well as biological functions of ARFs and their regulation mechanism are discussed. A typical ARF
protein consists of a N-terminal DNA Binding Domain (DBD), a variable middle region that may function as
an activation domain (AD) or a repression domain (RD), and one C-terminal Aux/[AA domain (CTD). ARFs
promote the transcription of early genes by combining auxin response elements, and they regulate the expres-
sion of downstream genes in the process of auxin signal transduction. Different ARFs are expressed in different
tissues and organisms. Also, the study of ARF mutants has indicated that different ARFs possess different
functions, which are due to differences in temporal and spatial expression and due to affinities with promoters
of target genes. Additionally, plant hormones, environmental factors, and non-coding small RNA act as im-
portant functions in regulating ARFs. [Ch, 1 fig. 42 ref.]
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123, 17, 25, 35, 26, 20 F1 39 A~ ARF FER G5 B 700, I 43 Skt ARF 36 PR 5 75 Bl 03 1Y) 45 44 R AIE
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iz, R, e 2 RMH AR, Hd, DBD H#25 75 AwRE TS G MR g5idlkpee T
XA S DR - S D AR O = BTE A ™, ARF 19 CTD 25493805 AUX/TAA & 1 1% 45 44 B T A
SERYIRIV 143 ML, AUX/TAA F ARF A] 3 1 53— X8 il — 3R 44

ARFI ey o

[ 1 I v

100 amino acids
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Figure 1 Domain properties of prototypical ARF and Aux/IAA proteins

Wt ARF 85 H B S5 MR AR 730, R IBAE 23 D URIIT AtARF 05, AtARF23 HUfA 1 A% B i
) DNA 4544 (DBD), AtARF3, AtARF13 Hil AtARF17 S/ 1 DERIER A R4 (CTD), HAH
AtARF #REL 5 3 A Fgseke ) WigEKfEH, HAT OsARF20 %4 2 1~ DBD 454k, H A4y OsARF #8354 1
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