Soil fertility and its spatial distribution for *Carya cathayensis* stands in Lin’an, Zhejiang Province

ZHANG Hongjun1,2, MA Shanshan1,2, ZHAO Keli1,2,3, YE Zhengqian1,2, WANG Zhiyong4, BAI Shan1,2

1. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; 2. Zhejiang Key Laboratory of Bioremediation of Soil Contamination, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; 3. Zhejiang Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, Zhejiang, China; 4. Agriculture and Forestry Technology Extension Center in Lin’an District, Hangzhou 311300, Zhejiang, China.

Abstract: To identify soil fertility quality and its spatial distribution differences in *Carya cathayensis* stands and to guide farmers with fertilizer application, the main plantation area in Lin’an was selected for this study. In this study, differential GPS was used to locate and navigate in the field and a soil sample was collected within a radius of 10 m and a total of 189 soil samples were collected from 7 townships in Lin’an. Soil pH and status of nutrients (organic matter, available N, available P, and available K) were evaluated and their spatial distribution characteristics were revealed by geostatistics and Kriging interpolation. Results indicated that the

Keywords: soil fertility; spatial distribution; *Carya cathayensis*; soil analysis; Lin’an; Zhejiang.
average soil pH was 5.23 with 87% of the soil pH values in the range of 4–6 meaning soil was seriously acidic. The average organic matter content in the soil was 31.6 g·kg⁻¹ with available average N of 155.40 mg·kg⁻¹, available P of 14.04 mg·kg⁻¹, and available K of 85.73 mg·kg⁻¹. Soil organic matter, available N, and available K were abundant. According to the standard fertility grading for Zhejiang Soil (with first representing low content and fourth representing high content), soil organic matter was mainly in the third or fourth grades accounting for 54% of the soils and soil available N was in the third grade for 76% of the soils. Soil available K was more than 50 mg·kg⁻¹ for 80% of the soils. Soil available P, however, was insufficient for 63% of the soils at less than 10 mg·kg⁻¹ which meant the first or second grades. Coefficients of variation for soil nutrients were between 27.15% and 141.03% indicating that soil nutrients in the study area had different degrees of variability. Yield of *C. cathayensis* varied from town to town and had a spatial correspondence to soil nutrients. This study showed that stands were seriously acidic with soil organic matter, available N, and available K sufficient, but in most areas available P was insufficient to meet the growing needs of *C. cathayensis*. [Ch. 2 fig. 4 tab. 35 ref.]

Key words: soil science; region of *Carya cathayensis* stands; soil nutrients; soil acidification; spatial distribution; yield.

山核桃 *Carya cathayensis* 是中国特有的高档干果和木本油料植物，主要分布在浙皖交界的钱山地区，包括浙江临安、淳安、桐庐以及安徽宁国等地区。山核桃产品因其独特的口味和较高的营养价值，越来越受到人们的青睐。随着山核桃产业的迅猛发展，栽培规模的不断扩大，山核桃产业已成为山核桃产区林农主要经济来源。为了提高收入，林农施肥水平不断提高，以提高林地土壤肥力。由于缺乏对山核桃产区立地环境的具体研究以及技术指导，林农长期施用单一化学肥料，导致了土壤养分不均衡，引起土壤酸化等问题，降低了山核桃产区土壤肥力，甚至导致山核桃病虫害加剧。例如现在盛行的干腐病，是由于长期施用氮肥所致。这严重破坏了山核桃的适生土壤环境，从而影响了山核桃的产量与品质。目前，已对山核桃土壤性质、叶片、果仁等以及山核桃产量的环境因子进行了研究，并相继对山核桃林地土壤肥力状况进行了调研，而对于山核桃主产区林地土壤肥力水平分级研究较少，且对于山核桃产地土壤肥力状况的空间异质性研究尚未涉及。由于地理位置、林农经营方式以及施肥水平的不一致性，可能导致山核桃产区土壤肥力存在区域差异。鉴于此，本研究以杭州市临安区山核桃主产区为研究对象，通过科学合理地采取策略研究和样品分析测试，研究了山核桃林地土壤的 pH 值、有效磷、速效钾、碱解氮、有机质质量分数现状和空间分布特征，及其与山核桃产量的关系，并对土壤肥力水平进行分级，以期明确临安主产区山核桃林地土壤肥力水平状况，并更直观地了解山核桃产区土壤养分以及土壤 pH 值的空间变化，为山核桃林地土壤养分管理和山核桃安全生产合理布局提供理论依据。

1 材料与方法

1.1 研究区概况

浙江省杭州市临安区（30°14′N，119°42′E）被誉为“山核桃之乡”。山核桃是临安的主要经济作物，其面积和产量分别占全国 60% 和 70% 以上，主要分布在西部山区的 7 个镇，包括湍口镇、清凉峰镇、河桥镇、昌化镇、龙岗镇、岛石镇和太阳镇。临安属季风气候，温暖湿润，光照充足，雨水充沛，四季分明。临安常年平均气温为 16.4 ℃，7 月平均气温为 29.1 ℃，极端最高气温为 41.7 ℃，1 月平均最低气温为 4.1 ℃，极端最低气温为 -13.0 ℃，年平均降水量为 1628.6 mm，降水集中在 4～9 月，年平均日照时数为 1847.3 h，无霜期为 235 d。山核桃林地多分布在海拔 50～1200 m 的丘陵山地，土壤类型主要为油黄泥、黄红泥、钙质页岩土、黄泥土。
个连续分布的可代表性等多种因素，利用ArcGIS地理信息系统软件，以试验区行政区划图、土壤类型图、山核桃空间分布现状图等为底图，进行了实验室室内布点，按照1 km²山核桃林地布设1个样点，形成了试验区山核桃林地样布点图。

2013年3月和4月，山核桃林地施肥前，进行了山核桃林地土壤样品采集。以试验区行政区划图、交通图和采样布点图为基础，采用差分全球定位系统（GPS）野外采样导航和定位，结合山核桃实际分布和种植情况，采用混合法，在7个镇共采集土壤样品189个（图1）。在10 m半径范围内，按“梅花”型布点，采集5个样点表面0~20 cm的土壤样品，混合均匀后组成1个混合土样，样品质量约1 kg·份⁻¹，捡去除根、草皮和石子等杂物，装于塑料袋中，带回实验室。同时，记录采样点山核桃的立地条件、土壤情况、农户施肥管理和山核桃产量情况等。

土壤样品在室内常温晾摊自然风干，捡除石块、根系等异物，用木棒粉碎，过2 mm尼龙筛，再从2 mm土壤样品中取出一部分，用陶瓷研钵研磨过滤100目筛子，2 mm和100目的土样分别装于封口袋中，编号保存备用。

1.3样品测定方法

土壤理化性状的测定均采用常规分析方法，土壤pH值采用m(m土)∶m(水)为1.0∶2.5的悬浊液测得；土壤有机质采用重铬酸钾外加热法测得；土壤氮采用碱解扩散法测得；土壤磷采用盐酸-氧化铵（HCl-NH₄F）浸提，钼锑抗比色法测得；土壤钾采用盐酸铵浸提，火焰光度计测得。

1.4数据统计分析与处理

本研究中，采用Excel2010和SPSS18.0统计分析软件进行数据的描述统计分析、正态分布检验；利用Geostat 7.0地统计软件完成地统计分析，半方差模型拟合，以及空间相关性分析；用ArcGIS10.2地理信息系统软件进行Kriging空间最优无偏估计和空间分析成果图的制作。

首先，对研究所的数据进行预处理，以保证分析结果的准确性。异常值出现概率低，但是异常值的存在会造成研究数据的偏态分布，影响分析结果的准确性。由于本研究的样本容量为189个，样本容量偏大，因此采用判决法对数据进行异常值检验，检验结果发现研究区土壤pH值及养分数据异常值均在4个以下，甚至没有异常值，证明本研究采样合理。

地统计学中，半方差函数和Kriging插值都要求数据符合正态分布，否则可能产生比例效应，会影响地面值和块值干，降低估计精度。正态检验的方法主要有正态图法、P-P和Q-Q正态概率图检验、偏度峰度联合检验法、夏皮洛-威尔克检验、χ²法检验和科尔莫戈洛夫-斯米尔洛夫检验法。由于本研究的样本容量为189个，属于大样本，因此使用峰度偏度联合检验法对异常值处理后的数据进行检验。检验结果发现有机质、碱解氮、速效钾的偏度和峰度值不同程度降低，并符合正态分布。而土壤有效磷和pH值的偏度和峰度值仍然偏大，不符合正态分布，为此需对这两者进行数据转换。对不符合正态分布的数据进行对数转换后发现，两者的小偏度和峰度明显降低，并能较好地符合正态分布或者近似正态分布。结果见表1。
表 1 处理前后土壤养分及 pH 值的偏度和峰度

<table>
<thead>
<tr>
<th>项目</th>
<th>原始数据</th>
<th>异常值处理后</th>
<th>对数转换后</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>偏度</td>
<td>峰度</td>
<td>偏度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>有机质</td>
<td>热度</td>
<td>0.86</td>
<td>0.48</td>
</tr>
<tr>
<td>碱解氮</td>
<td>-0.08</td>
<td>-0.08</td>
<td>0.29</td>
</tr>
<tr>
<td>有效磷</td>
<td>16.09</td>
<td>16.09</td>
<td>3.48</td>
</tr>
<tr>
<td>速效钾</td>
<td>2.00</td>
<td>2.00</td>
<td>1.19</td>
</tr>
</tbody>
</table>

2.2 研究区土壤肥力基本状况

土壤的肥力状况需要借助土壤肥力水平分级标准来进行评价。由于对山核桃林地土壤的研究较少，迄今还没有相应的分力分级标准来衡量山核桃土壤的肥力状况。本研究以农业上采用的常规农作物肥力等级划分标准为参考，如表 3 所示。

由表 3 可知，土壤 pH 值大部分为 pH 4-6，其中有 87%的土壤 pH 值在 pH 6 以下，仅有 13%的土壤属于碱性和微酸性。土壤有机质质量分数主要分布在第 3 等级和第 4 等级，所占比例为 54%，大于 10.0 g·kg⁻¹ 的仅有 0.5%，说明有机质比较丰富。碱解氮质量分数普遍较高，主要处于分级标准的第 3 等级，且所占比例为 76%。碱解氮大于 200 mg·kg⁻¹ 的区域占 15%，小于 100 mg·kg⁻¹ 的区域仅有 8%。与碱解氮相反，土壤有机磷质量分数普遍不足，63%的土壤有机磷不足 10 mg·kg⁻¹，其中不足 5 mg·kg⁻¹ 的区域占 40%，超过 10 mg·kg⁻¹ 的占 37%。土壤速效钾较丰富，其中大于 50 mg·kg⁻¹ 的区域占 80%，即大部分区域都在第 2 等级以上，而低于 50 mg·kg⁻¹ 的只占 20%。

根据 ZHANG 等(17) 对变异系数的划分，当变异系数小于 10%时属于弱变异，10%-90%为中等变异，大于 90%则为高度变异。由表 2 可知，研究区土壤 pH 值、有机质、碱解氮、速效钾均属于中等程度变异，其质量分数差异较小。其中土壤 pH 值变异系数仅为 12.24%，说明研究区土壤 pH 值较为接近，最大值只是属于个别现象。绝大多数采样点土壤都呈中性。在上述养分指标中，有效磷变异系数最大，达到了 141.03%，属于高度变异。结合前面的土壤养分等级评价结果，表明研究区土壤有效磷质量分数具有明显的变异性，质量分数高低差异较大。

土壤酸碱度是土壤养分的重要特征之一，不仅影响土壤微生物活性，而且与土壤养分的形成、转化以及有效性有密切关系，也是影响土壤肥力的主要因素之一(18)。山核桃适宜生长在微酸性及以上的土壤

表 2 土壤养分的描述统计分析

<table>
<thead>
<tr>
<th>项目</th>
<th>pH</th>
<th>(w_{0.6} (g/kg))</th>
<th>(w_{0.6} (mg/kg))</th>
<th>(w_{0.6} (mg/kg))</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均值</td>
<td>6.23</td>
<td>190.90</td>
<td>26.19</td>
<td>255.74</td>
</tr>
<tr>
<td>标准差</td>
<td>0.74</td>
<td>10.90</td>
<td>42.19</td>
<td>19.80</td>
</tr>
<tr>
<td>最大值</td>
<td>7.65</td>
<td>67.70</td>
<td>26.97</td>
<td>255.74</td>
</tr>
<tr>
<td>最小值</td>
<td>4.10</td>
<td>9.70</td>
<td>56.61</td>
<td>18.92</td>
</tr>
<tr>
<td>变异系数％</td>
<td>12.24</td>
<td>34.49</td>
<td>27.15</td>
<td>45.86</td>
</tr>
</tbody>
</table>

表 3 土壤肥力水平分级标准及各等级所占比例

<table>
<thead>
<tr>
<th>肥力水平</th>
<th>数值</th>
<th>百分比%</th>
<th>数值</th>
<th>百分比%</th>
<th>数值</th>
<th>百分比%</th>
<th>数值</th>
<th>百分比%</th>
<th>数值</th>
<th>百分比%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>有机质</td>
<td></td>
</tr>
<tr>
<td>速效钾</td>
<td></td>
</tr>
<tr>
<td>第 1 等级</td>
<td>≤5.0</td>
<td>47</td>
<td>≤1.0</td>
<td>0.5</td>
<td>≤80.0</td>
<td>2</td>
<td>≤5.0</td>
<td>40</td>
<td>≤50.0</td>
<td>20</td>
</tr>
<tr>
<td>第 2 等级</td>
<td>5.0-<6.0</td>
<td>40</td>
<td>1.0-<3.0</td>
<td>46.0</td>
<td>80.0-<100.0</td>
<td>6</td>
<td>5.0-<10.0</td>
<td>23</td>
<td>50.0-<80.0</td>
<td>31</td>
</tr>
<tr>
<td>第 3 等级</td>
<td>6.0-<7.0</td>
<td>11</td>
<td>3.0-<4.0</td>
<td>33.0</td>
<td>100.0-<200.0</td>
<td>76</td>
<td>10.0-<20.0</td>
<td>15</td>
<td>80.0-<120.0</td>
<td>34</td>
</tr>
<tr>
<td>第 4 等级</td>
<td>>7.0</td>
<td>2</td>
<td>>4.0</td>
<td>21.0</td>
<td>>200.0</td>
<td>15</td>
<td>>20.0</td>
<td>22</td>
<td>>120.0</td>
<td>15</td>
</tr>
</tbody>
</table>

说明：土壤肥力等级参照《浙江土壤》，第 1 等级低，第 4 等级高
中。调查发现山核桃出现连片的叶片黄化，枯萎，根系死亡现象较重，林地土壤 pH 值均小于 pH 5.0. 洪游游等的研究结果表明：土壤 pH 值在 20 世纪为 pH 6.0 ~ 7.0，然而本研究土壤 pH 值仅为 pH 5.23，在山核桃生长期间 pH 值可能更低。由此可知：山核桃林地土壤严重酸化。随着山核桃市场需求量的增加，林农为了提高山核桃产量，大量施肥，以提高山核桃生长所需的养分。已有研究发现：施肥是导致土壤酸化的主要原因[19]。研究区大量施用的氮肥，在一定程度上被植物所吸收，大部分氮经过硝化作用产生酸，造成土壤酸化[22]。土壤酸化又会影响山核桃对营养元素的吸收，从而导致山核桃产量和品质下降[20]。

土壤有机质是土壤肥力的物质基础，影响作物对微量元素的吸收，从而影响农作物的产量和品质[21]。有研究表明[22]，土壤有机质与其他养分不同，它在植物生长期间变化比较缓慢，并保持相对稳定。这是研究区土壤有机质变异系数偏小，质量分数差异不明显的主要原因。研究区土壤有机质平均值达 31.6 g·kg⁻¹，处在分级标准的第 3 等级。林地土壤有机质丰富。调查发现[23]，土壤有机质与土壤碱解氮呈显著正相关，研究区大量氮肥的施用，不仅使土壤碱解氮普遍较高，还提高了有机质质量分数。同时，山核桃林地全年枯枝落叶堆积，无人清扫，也是导致林区土壤有机质富的原因之一。

土壤有机质是植物所必须的营养元素之一。研究区土壤有机质水平高低有效反映林农施肥状况。调查发现：林农大多施用氮磷钾复合肥，研究区土壤有机质平均值达 155.4 mg·kg⁻¹，且质量分数处于第 3 等级和第 4 等级的区域占 91%。显然，这与研究区大量施肥有关。化肥在分解过程中会产生二氧化碳以及各种有机酸，酸化土壤中各种有机酸，无机酸，一方面加剧了土壤酸化，另一方面则促进土壤中难溶性矿物质的溶解，从而增加土壤中有效养分[24]。

缺磷是植物生长的主要限制因素之一[25]。初步调查发现：品质好的山核桃大部生长于石灰性母质发育的土壤上，而这种类型的土壤有机质一般都比较贫瘠[26]。石灰岩土壤含有大量的可交换性钙，磷易与钙形成磷酸二钙、磷酸八钙、羟基磷灰石以及难溶的磷灰石等磷酸钙盐沉淀，是降低磷的有效性的主要途径[27]。有研究表明[28]，土壤有效磷达 10 mg·kg⁻¹ 的时候才能满足山核桃的生长。研究区 63% 的土壤有效磷不足 10 mg·kg⁻¹，因此研究区土壤有效磷质量分数亟待提高。施肥特别是酸性肥料和氮肥的施用有助于提高土壤磷的有效性[29]，因此，提高磷质量分数，林农不同程度施用氮肥，而研究区有效磷变异系数为 141.03%，其质量分数高低差异显著与林农施肥管理水平不同密切相关。

由于施入土壤中的氮容易转化，随雨水淋失，磷易于被土壤固定，而钾不会发生形态的转化，因此研究区土壤速效钾质量分数高低能够很好地反映林农施肥状况。高产山核桃林的最低肥力要求中土壤速效钾不小于 55 mg·kg⁻¹。研究区土壤速效钾质量分数差异不明显的主要原因[30]，因此，为提高磷质量分数，林农不同程度施用氮肥，而研究区有效磷变异系数为 141.03%，其质量分数高低差异显著与林农施肥管理水平不同密切相关。

3.2 研究区土壤养分及 pH 值的空间变异结构

变异系数反映了样本的总体特征，并不能准确反映空间的变化规律，即不能反映土壤养分的空间异质性。地统计学能够很好地反映研究区土壤养分含量的空间变异结构。因此，本研究采用地统计学方法对研究区土壤养分数据进行了方差分析，使用 GS+ 7.0 软件对土壤养分和 pH 值数据进行了半方差函数拟合，得到各养分及 pH 值的半方差函数模型及其参数（表 4）。由表 4 可知：土壤 pH 值较好地符合高斯模型，土壤有机质和碱解氮指数模型，土壤有效磷和速效钾较好地符合球状模型。

土壤养分空间变异是随机因素与结构因素共同作用的结果。在半方差函数模型中，块金值（Cₐ）表示由人为活动等非自然因素引起的变异，属于随机变异；基台值（Cₐ）表示系统内的总变异；基台值（Cₐ）表示随机因素引起的变异，当 Cₐ/CₐC > 35% 时，表明变量具有强烈的空间自相关，即主要受到结构性变异的影响；Cₐ/CₐC > 75% 时，表明变量具有强烈的空间自相关。块金值的半方差模型及相关参数（表 4）。由表 4 可知：土壤 pH 值较好地符合高斯模型，土壤有机质和碱解氮指数模型，土壤有效磷和速效钾较好地符合球状模型。
2.4 土壤养分及 pH 值空间分布特征

为了直观描述土壤养分及 pH 值在空间上的分布特征，了解研究区内各个乡镇的土壤养分状况，本研究在半方差函数分析的基础上，利用拟合得到的理论模型及其相关参数，结合土壤肥力等级评价标准，应用普通克里格方法进行了最优无偏插值，绘制了土壤养分及 pH 值的空间分布图(图 2)。

由图 2 可见，土壤 pH 值呈近似“U”型分布格局，除了几个高值斑块区域土壤偏碱性外，其余大部分区域土壤呈酸性，并由南向北酸化程度逐渐增强。土壤有机质量分数由东北向西南逐渐递减，东部有机质量分数相对较高。土壤酸解氮质量分数无明显空间分布特征。区域内有机质量分数差异不明显且相当丰富。土壤有效磷质量分数由西向东逐渐递减，并在西部出现相对高值区。土壤速效钾质量分数由中部向东西两边递增，然后土壤有效磷和速效钾呈斑块状的空间分布特征。

从土壤 pH 值和养分的空间分布情况来看，龙岗、昌化中北部，太阳南部以及清凉峰西南部土壤酸化严重，属于一级，pH 值低于 5，其余地区 pH 值为 5-6，pH 值处于 3 级和 4 级的土壤几乎没有。研究区土壤有机质量分数都极其丰富，其中岛石、龙岗、昌化、太阳、湍口镇以及其他区域有机质量分数都处于 3 级，且太阳以及昌化和昌化交界处出现了 2 个高值区，有机质量分数处于 4 级，大于 40 g·kg⁻¹。清凉峰、河桥中西部以及湍口部分地区有机质量处于 2 级，质量分数也较丰富。与有机质不同，研究区土壤碱解氮质量分数也很丰富，几乎所有镇都处在 3 级，太阳镇北部碱解氮达到了 4 级。由前面分析可知，研究区土壤有效磷质量分数变异较大，在各级均有分布，63%的土壤有效磷不能满足山核桃正常生长，主要分布在昌化、龙岗、昌化中北部地区以及河桥、昌化部分地区，其质量分数低于 10 mg·kg⁻¹。其中岛石、昌化、昌化中北部以及昌化中北部地区有效磷质量分数较高，高于 4 级，而昌化中部有机质可以造成磷的淋失，因此需要注意磷淋失风险。土壤速效钾质量分数变异也较大，各镇均有分布，主要分布在昌化、昌化中北部、昌化中部和昌化中北部，其质量分数大于 80 mg·kg⁻¹。因此昌化中北部等能够满足山核桃正常生长。

自然和人为的双重作用导致土壤养分及 pH 值空间分布具有较大的变异性，尤其是人为施肥的影响。其次，土壤理化性质之间的相互作用不可忽视。由于受到成土母岩、海拔以及人为施肥等因素的影响，导致研究区不同乡镇土壤 pH 值差异明显，但是同一乡镇 pH 值变化程度不同，显然人为干扰的结果，尤其是长期施用大量化学肥料所致。研究区内有机质量分数丰富，但空间分布格局显示不同镇之间土壤有机质量仍然存在差异。有机质量分数较高的太阳以及昌化，海拔较高，石灰岩面积分布广，有利于土壤有机质的积累，而海拔较低的河桥、清凉峰以及湍口，石灰岩分布面积小，导致其有机质量分数相对较低。研究区内有机氮质量分数明显，显然这与研究区氮肥施入量相当有关。土壤酸解氮与速效钾质量分数高低差异大，空间分布极为不均。土壤有机磷的矿化和无机磷的溶解很大程度上取决于土壤酸度，酸性土壤速效磷质量分数随 pH 值的升高而增加。由空间分布图可知土壤 pH 值较低的区域其有效磷质量分数相对较低，而 pH 值较高的区域有效磷质量分数较高。速效钾主要来源于成土母质与人为施肥，研究区施肥水平不同加剧了有效磷与速效钾的空间分布不均。

2.5 土壤养分对山核桃产量的影响

产量是最直接反映山核桃林地经济效益的指标，更是林农密切关心的问题。尽管山核桃产量会受到
气象等多种因素的影响，但从以往的调查和果实分析来看，营养条件是造成山核桃果实产量大小年的主导因子[33]。

由图2可知：岛石、昌化、太阳等3个镇山核桃产量较高，河桥西部产量低，而东部地区产量高。其余镇山核桃产量较低，尤其是龙岗镇，产量偏低。

结合研究区土壤养分及pH值分布图可知：产量较高的岛石、昌化、太阳、河桥4个镇土壤pH值相对较高，产量偏低的龙岗镇土壤pH值较低。山核桃产量高低与土壤有机质质量分数高低具有较好的对应关系，但也有部分区域不一致现象。

图2 研究区土壤理化性质及产量空间分布图

Figure 2 Spatial distribution of soil physical and chemical properties and yield in the study area

气温等多种因素的影响，但从以往的调查和果实分析来看，营养条件是造成山核桃果实产量大小年的主导因子[33]。

由图2可知：岛石、昌化、太阳等3个镇山核桃产量较高，河桥西部产量低，而东部地区产量高。其余镇山核桃产量较低，尤其是龙岗镇，产量偏低。

结合研究区土壤养分及pH值分布图可知：产量较高的岛石、昌化、太阳、河桥4个镇土壤pH值相对较高，产量偏低的龙岗镇土壤pH值较低。山核桃产量高低与土壤有机质质量分数高低具有较好的对应关系，但也有部分区域不一致现象。

气温等多种因素的影响，但从以往的调查和果实分析来看，营养条件是造成山核桃果实产量大小年的主导因子[33]。

由图2可知：岛石、昌化、太阳等3个镇山核桃产量较高，河桥西部产量低，而东部地区产量高。其余镇山核桃产量较低，尤其是龙岗镇，产量偏低。

结合研究区土壤养分及pH值分布图可知：产量较高的岛石、昌化、太阳、河桥4个镇土壤pH值相对较高，产量偏低的龙岗镇土壤pH值较低。山核桃产量高低与土壤有机质质量分数高低具有较好的对应关系，但也有部分区域不一致现象。

3 结论

研究区土壤严重酸化，pH值的平均值仅为pH5.23，不适宜山核桃的生长。从山核桃养分需求来
富范围需要控制钾肥的施入，产量受土壤酸碱度影响，必须严格控制磷肥的施用。北部、清凉峰南部、河桥中部及河桥中部酸碱度严重，应引起足够重视。土壤有机质、碱解氮、速效钾均较为丰富，应合理施用钾肥，棱石、昌化、罗峰西部以及河桥中部酸碱度严重，应引起足够重视。土壤有机质、碱解氮、速效钾较丰富，应合理补施钾肥，因此，必须严格控制磷肥的施用，应适当减少氮肥施用。昌化、河桥中部以及太阳北部小范围内应控制钾肥的施入。昌化、河桥中部及河桥交界区有酸化极其丰富，必须严格控制磷肥的施用，以防止磷流失的土壤造成污染。此外，研究区山核桃产量高低不一，其产量受土壤酸碱度、有机质、速效钾影响较大。因此，研究区山核桃产量一方面要注重酸化的改良，另一方面要因地制宜控制或施用化学肥料，保持土壤养分平衡，促进山核桃产业健康发展。

[32] 赵伟明, 王艳艳, 马嘉伟, 等. 临沂山核桃林地土壤磷素状况及其淋失风险分析[J]. 浙江农业学报,

