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Lightweight plant disease recognition model for edge computing

WANG Guan', WANG Jianxin', SUN Yu?

(1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China; 2. School of
Cyber Science and Technology, Beihang University, Beijing 100191, China)

Abstract: [Objective] The traditional deep learning model is not suitable for edge deployment because of too
many parameters and too much calculation. Automatic identification of plant diseases on the edge of the
network is urgently needed to realize long-term and large-scale low-cost crop monitoring. [Method] By using
multiple model compression methods, a light weight deep convolution neural network was obtained, which
could be deployed in the embedded system with limited computing power to realize intelligent identification of
plant diseases at edge nodes. The model compression was divided into two stages. The first stage used the
channel pruning method based on L; norm to compress the MobileNet model. In the second stage, simulation
learning and quantization were combined to restore the recognition accuracy while the model was quantized,
and a high-precision lightweight end model was obtained. [Result] Experimental results of 58 kinds of plant
diseases in PlantVillage dataset showed that channel pruning compressed MobileNet by 3.6—14.3 times, and
quantization reduced the parameter accuracy of the model from 32 bit to 8 bit. The overall compress rate
reached 14.4—57.2 times, and the recognition accuracy was only reduced by 0.24% to 1.65%. Compared with

the pruning method trained by common learning, and pruning with quantization trained by common learning,
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this method achieved higher compression rate and recognition accuracy. [Conclusion] The combination of
multiple model compression methods can compress the artificial intelligence models in depth with only tiny loss
of accuracy, and provide plant disease recognition models for agriculture and forestry based on edge computing.
[Ch, 3 fig. 2 tab. 23 ref.]
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Figure | Example of plant discase images from the PlantVillage dataset
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Table 1 Plant disease recognition results of models on the edge
W% BEEM RJRSRAE BAURARR RRRmEAE R AR AR IECTI 8%
70 091 3.6 4 14.4 95.99 96.18 94.41 94.92
80 0.58 5.7 4 22.8 95.55 95.51 93.52 93.99
90 0.23 14.3 4 57.2 94.58 94.87 92.41 93.15
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Figure 3  Confusion matrix on the test set of models on the edge
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Table 2 Plant disease recognition results of models on the edge compressed by different methods

BRI /% SHE/M TR Sy | K1 it JE45 2R HEWR/%
LISl v B eS| 32 3.6 95.48
70 0.91 SRR 8 14.4 9545
AT 8 14.4 95.99
YA+ TORE A ) 32 5.7 94.95
30 0.58 BRI 2 2 8 22.8 94.92
AR 8 22.8 95.55
BIAEHTOAR A2 > 32 14.3 93.40
90 0.23 YRR b O 2 8 57.2 93.53

AHIFFEARAY 8 572 94.58
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