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WE: THivh s BT (ERF) A4 ¥ APVERF # %X B TR Rk Pey—3y, RLEMBEALSH I AAP2ZMEK, &
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FiRAERHEFE, ZE T EuHBEE TR EE, ERF T @ EEES T THARSFRCAGAE, 8
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A review of the structure, function and expression regulation of
ethylene response factors (ERF) in plant

XU Shida, GENG Xingmin, WANG Lulu
(College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, Jiangsu, China)

Abstract: As part of the AP2/ERF superfamily, ethylene response factors (ERF) enjoys a structure featured with
an AP2 domain and conserved motifs with different functions outside the AP2 domain. With previous
reseaches, ERF positively regulates plant resistance under stress, but it can also negatively regulate plant
resistance for certain reasons. ERF regulates fruit ripening by regulating the changes of pigment and softening
and controls the longevity of flowers and leaves by regulating the process of senescence and abscission. ERF is
regulated by signal molecules to start transcription, and then regulated by other mechanisms to complete the
expression. ERF can achieve a wide-range regulation of the downstream genes by regulating signal molecules.
The interaction between ERF and protein enriches the way in which ERF regulates downstream genes. And this
study, based on what has been previously researched, is aimed to conduct a review of the structural
characteristics, biological functions and expression regulation mechanism of ERF so as to provide a reference
for future studies on ERF. [Ch, 1 fig. 1 tab. 77 ref.]
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L& B [ F- (ERF) /& AP2/ERF(apetala2/ethylene response factor) K ZEH ) 1 A%, Fe 5 AR B
Nicotiana tabacum 153 BRI, FEA 14> AP2 4595, ERF Z JMhFaRik, JEHEA SEMMhaht
PR A S T4 A 0IRE N, BEETRIRA, ERF G5 & 2838 P Ve IR iz i, b AP2 454415
£ DNA S5 630 22 81K AMIGY . 1845 AW A= KA SR A= W3 w13 5575 17, ERF 132 B bk
TR HE R FEM . BRI, HAES 50+ KRB TRV W E ERF MATIYI6E. ASWF58 L) ERF [
SERFEAE . A DR DL R G IR AL Oy 8, XFIEAEA ¢ ERF BB #E 1254, DA ERF 3R
IRV A REMT 5T S RS

1 ERF 4 #84E

1.1 ERF £k

ERF #7471/~ AP2 Z5HMgis, AP2 454182 ERF (1) DNA 254848, 2 HAT S840 564 . NAKANO
GO ARG RE LR SN T - & T 450 F 8 5L 5 43 5K U M JT Arabidopsis thaliana F7K
Oryza sativa (%) ERF 730 12 20801 15 41, X207 GE FHZ MY, WE 1S Medicago sativa® . —f#
JERAEL Brachypodium distachyon™ ., N2 Panax ginseng™ 2% . [R]41 1Y ERF K A 2 FH AL B4 25 k6 R ST 3
¥, R HA AR,

AP2 Z5 ¥ 3t R I TR T AP2 FEHH, iR 2y 60 MR IEFRALL™ . AP2 2538 N S 777
VAR, &8 3D ROPATH B-T&, X 34 B-Ir& e iR gl =0 e Foo b A RN, C i
A 1APIEMED o2, TTAES 5 HABSE 55 7 DNA (M EAEAY . ERF H45 AP2 Z5Ha ek 45 7
BIARFE, ZEEMIEH A5 ERF 5 DREB, H TH8ER AN, ERF #1 DREB Xt Jii 8+ 126 f1dE iR
R4 2 %Y. ERF M DREB # & 45 & 9 i X 5T 14 43 5l J& GCC(#% .0 J¥ 51 2 GCCGCC) Fl
DRE/CRT(dehydration-responsive element/C-repeat, #%.0>JF %1 & CCGAC)”\, BRixXWi#4h, ERF it n] LL%h
GHAMP LT, BIANIEAM Tamarix hispida (%) ThRCRF1 7] 5 GCC. DRE. TTG1 1 TTG2 3LJF45 400,
ERF 537454 MRS LT 2 2SR HL ] B IR F , ARAE BRI 015 5 U X L P (0 25 At m) , 5 an el
BT ERF1FERF RS S T 5 8 AW b 5 R A 8 7 L0 GCC 3RIF 45 &, HZ2 8 HE Y ia
ERF1 {5¢ 5 A ditE i N A 8+ L% DRE 374561,

1.2 IheeErF

ERF 7E AP2 S4h &5 — S RSP (R SR IL Y . A LT 7E ERF S 55 s I EZ/EH, 4
Iy B R s R AR BT 2 P BN BE A AR sl B2 . He 4 EAR(ERF-associated amphiphilic repression) 2837,
XRIEFA 2 FRSEE S, 438912 LxLxLx F1 DLNxxP!'?, EAR 3L 0] B 425200 ERF 4 5 oh e,
B an 48l md ¥ P ERF4 A 2 FhE &Y, Hitp ERF4-R(% A EAR J:J7) G i FE K %3k, 1fii ERF4-A(A &
EAR JLJ7) fig LR IE R 381, A 157 HA BOS 45/ D fg, bt EDLL J% )3 BLAT S0E 7% Sk 9 T
AE, HRSFINA AR (B), RAZAR (D) Mse &R (L) 5REEMR4, 8 TIRIEM BTG SN, Eridf
HAbThHE, Gl JT ESRI HiY ESR B ¥ R UG 453k, 2 VP16 ¥k ESR BL/¥HT, ESR1 275 T2
HEZF AR RE M. ERF Dfe Y v] LU i 2 K g8 1 7 =08 i 22 B A% ERF B[R v, &4 /5 ERF 192
REARFh 32 77 (9 2000 2 A i, Ak L EAR SEJ7 Ry LAt i i) SRDX JP I ER N A ERF H, B4 f5 1
ERF HA & il i et

2 ERF 8 3¢

ERF WAV #0IReds e BAEwE T, o mAERK LA ENZSS . ERF MYREE 2 M EHEEH
PR RIS, oA — S i PR 4 At S R S0 R (3 1)
2.1 ERF 7ERB I 5z B B9 I sk

ERF TEAH )52 S B30 Fsf 38 2 908042 J 2 1 17 (%) AR DG 36 R I %o 5 F il o AR Wik v, ERF HRAH L8
o A B L 1 O O R OCB TR IR, MR T T ERF96 13 PDF 1 PR X 0 BRAR S 6 R 1T
ARG T H1 X b 2H ERF 7] LA L CYP81F2 {2 #F 25 B ma W 2R it 11 5 ™. A7 3 o A R 78 P 1 98 T LA B
1R EAR R 8L, Wi Solanum lycopersicum "' ERF68 TJ L I 847 S 40 MO AR e PE A8 T 1) 2 PR 41 12F 241 fif
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*& 1 ERF ByIhgEE
Table 1  Function of ERF

-t} ERFs [EROEES)SS EECypan H AL A BR
EVNEpi ERF4 CAT3 WEACENE, ROSTERMRIEARSZ—  RIWMERFYEEAF, FENFERARN
IS ERF96  LEPDF12a. PR-3/4FIORAS9 ?Hj}ﬁw&u%’ ORASOIH R BT X A T
o= ‘~‘E|',“‘ /:, "ip —‘E‘l—l -
BN ERF4 LURbOAD IR, S | SR
B R
BIF  IXOHIERF  LHICYPRIF SLCTET e
JHLACS1. KCR1. PAS2. . N ~ -
WEK  wrn ;C’QWSD BRI RO AR, R kb
N RAP22F | JE ZALEMNAIE T, RA N AL AT
T rapy1y  LVALBDAIRPCOL ARG A2 137 2 14 (LR T A
NP AtERF72  FEIRT1. HA2FI #CLH] IRT1, HAZWM, CLHIMSER IR Z YIRS, R et
HR MAERF2  LVEMdACS3a RN FE R 05 A O R E— ek 20 A R
kA ,I]unﬂ;n‘él‘ a=rEa 17 S1E|
i MdERFS  FIMAERF3 ii'? FRTER BRI e sttt
KFE OsERF71  _LIHOsXIP T A ke g 1 AR SR M SRR AT PER
S pemen LOOLONE BAOGE o eim e T R
BrOPR3
i JRE4 FEDWESHIGAMES S A i AR A A AR DG R RS AR A
JHCOPA. Sw-5a. AOS N
- ERF68 #’; COPA. S0 A0 5 smprareser- (LIRS T, B R
A% izgﬁ f” FIERNBGLAI BLFLARIFNG, ITHAAML B LA
I PsAP2 FiEH40x1a bz — HETRARR R OSTH 4 fg S0
PR PhERF2  L¥¥ADH1-2 N HE R K HLER
1134 VaERF092 _LJHVaWRKY33 T, VA AH I A TR X R A R
BB paprero | MOLOXTR . MAAOCSHL i poak BRI, W
MaOPRA
e FiEAMaEXP1/3. MaPG1 . e e S (L LA L (b
/NREFRE MaDEAR1 MaXTHI0. MaPL3FIMaPME3 BiRAnpERE, SRILHAFREER Gy kR Rk
At CitERF13 _bICitPPHFICItNYC B 5 R ISR S R AR
AR citErFe  LVECitPPH Z 5 Z Rk Jin SR S R AR
BT PpeERF2  FPpeNCED2/3F1PpePGI ABAG AT AL BE A B 1 SRS PR AL
AN CpERF9  FHCpPME1/2HICpPG5 20 L o i By 1SS AL
AT EjERF39  EjACL1 RBTR A WHER PERER AL

Pl . SERMalus domestica, J&75Brassica rapa. JZERosa chinensis ., 23EPapaver somniferum . A Petuniaxhybrida . 1L17%]
Vitis amurensis . /NREFEMusa acuminata . 8 Citrus sinensis . Wiflf Citrus reticulata . BkAmygdalus persica. TR Carica
papaya ., WAL Eriobotrya japonica

FET-PY, JEA YA T ERF i ad JA R4 AR AR YA Uik A e R R Rk, RmimbisitE . BT
PhERF2 YERIKESZ /K B DL T L8 ADH1-2 Z BE i UM 1 2235, 2 Al AR K A Bk B, LA 1
EJERF39 ZANRIAE S, FIAABZE G MR EACLL, fEFFRIRTL, W EY, ERF AT LI o s
B SEIN TR IsR A BUE , BN LA P VaERF092 SZ AR IO S S i 5, VaWRKY33 Fik, M
[F1) 2 1 e A IR 9 TP ERF 34 0] DLSE b W38 3 Y0 ) o ARG s Al 0 (i e, A/ NS Vigna
angularis "1 VaERF3 FEERR8ME o S K FE OsERFT1 78+ 5 Wha rh &R a] LIS S AR AR 8, 43 il$E = 4H
JOL P B B 000,

ERF A RETEW B 450 F ORI DUE , X 2RI T 22 1 45 . BRF W] LA 5 e il A DG i
PEFEDR 1) R IB AR Y BT o SURIIT ALERFT72 2332 R AR5 I 2 5 2R Y IRT1 F HA2 1Y
Pk, PE—BIHI BRI IL ), FAKE Betula platyphylla W BpERF11 Z £ 0 A+ 5105 S 255, 10
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LEA MPBUKEAZRERARE, IR 200 S 280 E . ERF 8 GEE 140 Hl A 554 S5 K 11 A L
ARH [ AR . SR MAERFA M EA $hMa Hurk i) MAERF3 ik, MIMTHISS T AP ERWE T
PER. IR ERF i 10 A 238 28 5l A5 540 DA SO e Al iy 2 0K, /NSRET AR MaERF10 SZ AR
i ES, 5 TIFY & MaJAZ3 B AEE 06 5 TR A BLEE PR 10 2235 LA SR AR (5 53k 42, i fli
R F B I B8 FE P, CaDRAT! #E B ML Capsicum annuum 3% )+ 5236 i, 38 1 30 51 B8 7% iR
(abscisic acid, ABA) & L )5 T HI S THKEE ABA 155 A9 5 e i R A i 23k

ERF F & e~ A it s 2 h R AL RS FaE . T SIERF84 W] LIS 1 5 AR phia
bk, HaH s Ay A pubE, TR AT RE & SIERF84 i i Wik 15 14 48 (reactive oxygen species, ROS) i
FRAE T AR ZE AN AT T, DA T 1 55 A A b SRR B e ), SESR o MAERFA X MAERF3 (13 ] B 25k
Jol8 T e dy CARAER AR N ER S I USRI HLEN Y. 255 Ipomoea batatas T IPERFA $ il A A= Hy Jiir36 g
NIRRT, XA IDERFA 3B S SRR 5 222210 S8,
2.2 ERF FER LR EHHIINEE

SRS A bR S AL AR SR AR 3K, ERF 0] DL i 45 A S SE IR R b i R A e A, L An R AR A
W CitERF6 SR S 5 K IE AR CitPPH, M HE SR SR G Fithes CirERF13 Wl LB 32 1A
CitPPH Fl CitNYC JIlE A LR LR, — MRS BUG S R AL IS, b &g SR S 1 SR 4R i 7
fir LA Jeiz ¥, ERF B IE 1 842 A0 G SE R 5 Ak i i F2 , Hb Bk PpeERF2 3 i i il PpeNCED?2 .
PpeNCED3(% 5 ABA G 10) Fl PpePG1(Z S5 4IIIEEREfR) 7%k, DIBH IR R SLS RAREDY; RIFEE A AR
JKHT CpERFO FI/NARWFEE MaDEART, #B 238 33 30 il AH G20 M BE R AR 0 JE R 355, B 1k SR S LR Ess 7,
2.3 ERF M REESHRE DRI

B S VS AR R A B, (H VR AR —Fpad B2 . 8 5 AR A Y
R RIET- . VULEE ST M0, 48R I+ WRKYS3 #4000 M 58 % A% 0 3% S5 F,  ESP/ESR i
WRKY53, AtERF4 1 AtERFS W] LA B 424 ESP/ESR () 3& 15 M 18] 322 s i i) 8 219 IR I+ vh i 484k
A (H,0,) IEMIE5E WRKYS3 (3615, ERFA [ 2 FV R H 8 CAT3 (363K LI HyO, B AT ]2
PE 4R o HE RN, ERF 36 0] DL o 98 5 A 55 o F SOHAE S SR R s i w  . JEE
BrERF72 F 2 Fi1 B 2 F 1R 175 5 51 1 8 2R AR A il 2k PR 3 15 DT 3l ok SRR R A5 5 3 48 i - | 3 26
KHASKHELI 87 75 F =8 i i th vl LA _B W 40 i or 24 R & i 3L RRERF113, FEUIBRILRR)G, Tk
ISR, AR SRR AN A5y 24 R 5 AT DA R R B IE KT, TR — R R, DR AR
TEREER Y B X 52 LA R AR5 R e UiV o 78 O 15 515 il Bt A —28 44 ) EDF(ethylene
response DNA-binding factors) 1) 25 [ i i T EIN3 19 N UE™, EDF YE 48 9 1 48 3 (8] 42 2 A6 1 5 & A
¥ . —Fh 4k FUF1 /) ERF I3 EDF 9235 TS B 2E K AL O ROREY teak, A Z2ny -2l 2L
Wit 52K RhBGLAL 23 MR AEIRAYB87% , 1] RRERF1 F1 RhERFA W] LIS LR 13835, B b AE iy

3 ERF W&k %

3.1 &3 ERF 9= &
3.1.1 455 % T ERF #9342 ERF Z&K(55 50T M M FRIE AT AN 19 DI 6E (8] 1), X 28(F
SO TR EAEP RN G ST, BYCE RN ARSI A EE(E B Lk, A5 ERF Bk T8
YER ERF M4 k1R, ZJ%F ERF MR C RESEH A, OBA&aF 57, 155 ERF 764
Yyt R I B S AR K R B A AR R . DI ST oA, S S AT BT AR L R R O A AR 2
&, 52RO CTR 3%, JCEERIL EIN2 A9 C 5w, R wimR 1k i EIN2 Wi 7E A 41 i
¥, (iSRRI EIN3 Befa e A AE I Z#VE P, FERD EIN3 B0 5 ERF1 556 PRy HE 5%k, ik seik
SR R P g A ) 20 67 6 PR DA 58 R AR S RN o B ERF1 AME R 252 015 515 0 ERF, N
MIAL Lycium chinense "1 1¥) LchERF 3% 6175 5 W wi A AR SR it Bk, U maIF T AtERF4A 52 205105 T 1%
I T XF 205 (A U
ABA TEAL X BAR A= Py 30 5 RE 0 1 5 S AN OC 1Y ERF B3Rtk . H AN i ERFS 3 R 5 55 32 4
U8 ABA i S I RESS SR A P X T R AER A A PTIERY . ABA 5 20 2 FiE S e B 00 T AR BUAE
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M, G EEIFh ABA (5 SREMOE R ERF& ( \ [ (__ERFL_ )™
ABI4, i ZJ A5 5@ EIN3 fEfg ] ABI4 () ) %
ik, B MRS AR 5 ROS 104 ZH C MAERES )
) ERF 0] DUR 3 15 ABA 52165, #il < (_MdERF2_)
FiJT AtERFA 5% ABA % T 140 ABA {5 5 1% - %
S ABA WL B F I, — N T D

ERF AHALRYIME WA R , 3h L :%
KIBLNRHA 5 ERF Z M, % | )
HIR S B X1 ERF i S s ebnte i | 7 | e o JREL )| ERF
R e A B K RS OSERFTL R | 7 < (_BrERFT2 )
BRI ERFO6 A6V AT A Sk, Sy | | -~
XA M0 BB, R KA ~(__SERFL )
Wi, SRS 20T ERF ¥t e SRR (S A < %
SAES, WNFETE BrERFT2 W] 1 2 i R T s 75 S < C_ERFAA )
I 135 TR A A G BT BT A 5 (k%) >(__RAERF4 )
0 SRR I ERF A A A ) —
Xetgr=pyk k. i sres 2RAmmEe - || N
Vi, TREA (2 bR 5 W T R A 1 i Y
AR OCEE DR HEBE T A= ) 5 17 KRR F S H1 ERF 5525 FwiAits

%S ERF 25 TIEA MR, HEWME)E Figuel Regulatory relationship between ERF and signal molecules
RhERFA 5 "= K 255 HIWHI T i RhBGLAL %%

S, MNTTAIE T B 2 R A, ER AL TR ™. KGR R EEMAEY DM E, EAGRAS
ERF 1323k, BIAn/KFE 1 OsERFO6 LI SiA% Populus deltoides ‘ Shanhaiguan’ ) PAERF-18°"),

ROS 7£ ERF W ia 5 5 i e vp B S 2EAE o W3 00 037 T 4 A A5 1 i) 2 11 Joi Jg 1o 8] e 1
B RGO 8 (5 B =N, ROS VR IR GUE 2 — BB 14 20 i N (10155 DR A% 128 22 41
¥, W0 — R Y5 B (protein kinases, PKs) m¥ & [ B & i} (protein phosphatases, PPs), i PKs £/l
PPs 1] DA fil K XoJ % S5 PR Ml 12 b 8 06 A T2 A 9 006 2 92 P50 43 G 48U g I ROS 23 fish & MPK6, B I
MPK6 2k ERF6, fiz/i ERF6 W45 T2 ROS M i H0, Brit 2 4h, A KFEHZ ROS iKY
SERF1, i#iif MAPKS BEIRALIE 0 , B /KA i R baa Pty
3.1.2 HA6R -7 ERF 69845 7F ERF BN 5, HErA LB TR miRNA S 09 2 o7
Ko EEMEBTHAES 5AEY WA R DREB R H WL, W/KFEH OsDREB2A4/2B' £ K Zea mays 1
ZmDREB2A', HAETEW A T A 2= A DIRE A S SR A . PR By 230 v] S8 R FE A, 9l il
BT, ERF4-A Fll ERF4-R [WAF7E LRl RNA 25 & 8 1 FPA 454, 40t JF46 % &/, ERF4-R (47
FELGR AR, DT 0BT Sl 9 2238 U it R i 2 221, miRNA B — 28B40 65 RNA,
F= ZE 3 o B A mRNA 82 U0 ER H Ar 3L R B3 DA ) B bR L R 5 . W0 miRNAT172 3 558 7 4l
AP2/ERF 25 [ 114 B3 DA I X6 R s A T 2 17 B0 2 75 LA R il - 4 M 3 i ke 3] 1 S s i VR Y e By 4z
Il miRNA #BZE X mRNA fEM =, SEEPE ST 8 ERF W] LU= A 2R A%, F& T ERF JJfg
ZHEPE . miRNA X mRNA #5147 BB ] LU 5 6084 ERF, BB miRNA X ERF A9 383K 5 4L
Al LUME i miRNA HR7E ERF D Ly .

A —SE R ML AT LR A SRS B AR B ERF. {2 AL EFEf# ERF A U2 —, i
WL IF N TR 8 () ArERFS3 E 3E a4 5L S8 A RING 45 89 3801 E3 17 2 3% 2 il
RGLG2 &z %1k, i HW, 265 A/, VIZLAY ERF #0450 N w00 FriE 45, 1% 28 ERF 19 N 3 7E
IEF K IREE T S Y B2 iR U ALH Pool/2 81fi, BE/EHE N 38 ( ATE1/2 1 PRT6 R 53 F
fife . HoEEIRZ AR (0, 5 —% A (NO) Ak, kY A semfl NO R . TEAEY A Tk
FUIRASBUEMMNBMIELL T, VIZHAY ERF A 1S LIRS EAATE, DTS e A DG 1 i 2 R 000 AN ] T i
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Wi, BERRALE—FPE ERF OALE], X ERF 2EE MW IEEEAE . AR TR E % & 33 ERF ¥
Uine &AL, BRI PE R AR A A AH AR () 6155 . WANG S8 i & 3 . It ERF6 I iR 1k
{75 0] AgE MPK6 R SR I HEF TR Ak, MR 1LJS 1 ERF6 %% 53¢ P 7 X L i B PR EL A B0 1) S0
Wt REEF KT Ghycine soja 1) GSERF7 A B S & i fs 5387, (B A 8% GsSnRK 1 BEFRfL 2 J5 A
S DA 160 J5 o T 0 A A ARAZ DN R P S s T g Y
3.2 ERF 3t TiiFE E R AL H
32.1 ERF #1554 F 69945  ERF 4L & il i WY h 5 5 0 752y, Hon ERF a4
PERA YR G a1 v i) O S L R AR R A ) U 3R {5 5l B . ERF i A5 0 6 O B L R (9 3=
ik, WIMET QI A A& ARG 5155, BRI SE 1) MAERF3 3% 41755 H e L8 MdACS1 1
Fik, MM 204G Y, ERF 0] DU C 066 o R S R ik, DI @ ny A, il
HAN S5 FE /N BF A AL S0 & 91 MaERF 11 REAE A 250 il MadACO1 0% 5 T il 205 1A . BRIt
Z4h, ERF WA LIS 5 R f v S0 6 U i e o 1 sy SRR S i, MAERF2 3@ 3341
TG PR R ) MdACST 1363k, JF B IREEIE PEEK MdACS3a W3R3K, SRIR I LR S iy LR L)
IR SR 1 B A - 70

ERF 1. 7] A3 i P8 #5 ABA 5 A 56 3 AR Sk 7 ABA 0955, Bl 4n 8 % o JERF1 4% [
ABA A B SCHE R NeSDR LUK ABA 9 & i, 355 A0 00 48 38 AR P g B, ERF 348 nf i)
il ABA {55, BIUNIRIIT AtERF4 i3 FihR RPN T2 ABA b3 )5, ML TFEARM T, ABA {554
SRl N Sk I R DY, XU AtERF4 Sl ] ABA (915 515 FEE T ABA 55 . #hF
PpeERF2 W] UL E HAMH| ABA A BUAHK KL PpeNCED2 . PpeNCED3 (1) 36ik LI ABA B4 7, HAth
FE )3 ZE AN FT R A K A% R 551,22 1) ERF W8T, BIANJEH BrERFT2 L HS 5 R F0TR A BUAH 5 3L KA
A A 5209, SER MAERF 1 38 53 A2 SE K A IR 1 A 8 LA G S AR MR X A s i e ik

ERF W DL a5 18 925 P 0 2% & S8 ALt [R] 224 (respiratory burst oxidase homolog, Rboh) FIEFHEH , Jiik
ROS A1, MfESEM a5 S AG8, S8 A ANy . H Bl B 7 vh 1) AERF73/74 1838 01 A RE A
£ Rboh ZJGHE, Rboh fifk Hy0, £, HyO, BEMMA (55 4k S L™ ™, (5553 )5 i ) ROS 2%
FP = A AL, ERF I8 ROS T BR R 40 LA BRI A9 ROS, 40 SUN 2507304 111 45 4 h 32 I
TRIE 5 S0 VaERFO80/087 5 ARG T, 5 Fk DRVRE Ak s i A RO AR TR At 1 306 1k S35 R LA o 5 7
P, WRME E A RMGEDTME . BIRIIT ERFA-A T L i CAT3 B335 ik 22 4 e s 11, M
A LAE A ERF P85 HL s AL R G LA 6] ROS, FIInEE3Erh PsaP2 W 0 . KATR A ABA 5 IFE 0 I
P8 AOX1a BEREAERR BT AL RE S0P,
322 EGMREA ERF SEAFUMELAERT LA ABIZHA N . 380540 5 & H B PMERE KR4 &
BESEUOTE fE 1. b A0 GmERFS5 5 GmbHLH., GmEIF B AE, Al 5 K 5 Glycine max %955 J5 4 (1 4t
£V, OSERF3 F1 WOX11 FAE I8 2 41 Jifd 73 224 2 o7 JE PR RR2 LAV 5 K R AR e & U7, EJERF39 Fll
EiMYBS B AE IR AT ZR A i P LA s AT SR SR SRS . BAT % S DI RE 1Y ERF 38 i 43 SL 5 11
il R LR B s il A/, B ande /NREF AR SE . MaERF 11 AT Ui SR 5 R A0 OG5 R i 3R 35
FHEATHZE A (& OB LR MaHDAT 33840 6 ZCR ), ERF i i 5 HAh % 5% N 7 2 18] &4 BAELISE 5
5HBBE S TG MHILE, BlansE R MAERF2 i i H N i 5 MJERF3 [ DNA 45 63845 4, Ml
MJERF3 Ttk 5 HArE K G gh 74557
4 REZ

ERF JEAHMIREA W55 R T, AP2 Z5Ky31E 0 DNA 45 G302 8 K e, (HAE AP2 Z5Fisksh i
ARZILF AT, FX B3 7 REA N FAE LR TR th 75 Bt — 158 . ERF I fEZ SR Z Ak
GURBE A B9, AT BRF ARFWORGE, f+ 21D REIERER (LA %, B2 A A
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