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摘要：【目的】分析城市绿地内细颗粒物 (PM2.5) 中重金属质量浓度的时空变化规律及其影响因素，可为科学规划城市绿

地、改善人居环境质量提供依据。【方法】在杭州市临安区选取居住绿地、商业绿地、广场绿地和公共绿地等 4 种类型

绿地作为研究对象，采用智能中流量 TSP 采样器采集空气中的 PM2.5，通过电感耦合等离子体质谱仪 (ICP-MS) 检测样品

中重金属的组成及质量浓度，分析其来源。【结果】4 种绿地内重金属总质量浓度平均值为冬季 [(950.13±90.15) ng·m−3]

大于春季 [(843.55±80.70) ng·m−3]，春、冬季重金属总质量浓度平均值从大到小依次为商业绿地 [(1 023.18±94.10) ng·m−3]、

居住绿地 [(942.20±89.20) ng·m−3]、广场绿地 [(861.85±84.05) ng·m−3]、公共绿地 [(760.18±80.48) ng·m−3]。绿地内的重金

属主要来自复合源 (自然源、道路扬尘、汽车尾气和工业污染)、以燃煤为主的工业源和交通源等。【结论】合理增加绿

地面积，可有效减轻城市重金属污染，在商业绿地周边控制车流量、推广新能源汽车能显著降低重金属质量浓度。图
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Pollution characteristics of heavy metals in PM2.5 in four kinds of
green space in Lin’an District of Hangzhou City
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Abstract: [Objective] This study aims to analyze the spatio-temporal variation of heavy metal concentration in
PM2.5  in  urban  green  space  and  probe  into  its  influencing  factors,  so  as  to  provide  reference  for  scientific
planning  of  urban  green  space  and  improvement  of  the  quality  of  human  settlement  environment. [Method]
Four  kinds  of  green  space  in  Lin’ an  District  of  Hangzhou  were  taken  as  the  research  objects,  including
residential  green  space,  commercial  green  space,  square  green  space  and  public  green  space.  The  intelligent
medium volume TSP sampler was used to collect the airborne PM2.5. The component and mass concentration of
heavy metals in the samples were detected by the inductively coupled plasma mass spectrometer (ICP-MS), and
their sources were analyzed. [Result] The average concentrations of heavy metals in four kinds of green space
were  higher  in  winter  [(950.13±90.15)  ng·m−3]  than  those  in  spring  [(843.55±80.70)  ng·m−3].  The  average
concentrations of heavy metals ranging from large to small in these two seasons were commercial green space 
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[(1  023.18±94.10)  ng·m−3],  residential  green  space  [(942.20±89.20)  ng·m−3],  square  green  space  [(861.85±
84.05) ng·m−3] and public green space [(760.18±80.48) ng·m−3]. The heavy metals in green space mainly came
from complex pollution sources (natural sources, road dust, vehicle exhaust and industrial pollution), coal-based
industrial sources and traffic sources, etc. [Conclusion] Reasonable increase of green space area can effectively
reduce  the  heavy  metal  pollution  in  cities.  Controlling  traffic  flow  around  commercial  green  space  and
promoting new energy vehicles can significantly lower the heavy metal concentration. [Ch, 6 fig. 2 tab. 41 ref.]
Key words: urban green space; PM2.5; heavy metals; spatio-temporal variation; pollution sources
 

随着城镇化进程加快，以细颗粒物 (PM2.5)为首的大气颗粒物污染越来越严重。大气环境的质量评

价和污染防治已成为大气污染研究领域的主要方向之一[1−2]。PM2.5 会通过呼吸进入肺部，其粒径小[3]、

比表面积大[4]，同时携带大量重金属元素和其他有毒物质[5−7]。长期生活在严重污染的大气环境下，人们

患心血管、呼吸系统等疾病的风险明显增加[8−9]，身体健康受到严重危害[10]。研究表明：铬、钴、镍和

砷等易引发细胞癌变[11]；过量的锌则会引发贫血和食欲下降[12]；镉容易造成细胞癌变和骨质疏松[13]；铅

对儿童和妊娠妇女的影响极大[14]。绿地在生态系统中具有自净功能，在调节生态平衡、改善环境质量和

保护人体健康等方面发挥着积极作用[15]。目前，有关城市绿地与大气颗粒物关系的研究集中在 2个方

面：一是植物枝干和叶片的滞尘效应[16]。如李超群等[17] 研究表明：5种地被植物叶片的滞尘量与叶表面

微观结构有关，被毛或边缘有齿的叶片滞尘效果较好。二是植物群落对大气颗粒物的消减作用[18]。如刘

宇等[19] 发现：江苏省宿迁市不同植物群落类型绿地内 PM2.5 浓度由大到小依次为草坪、篱草、大阔叶乔

草、乔灌草、针叶乔草和小阔叶乔草。近年来，有学者采用 ArcGIS对大气中重金属元素含量进行空间

分析，发现铜、锌和镉的空间分布特征较为相似，高值出现在车流量大的区域[20]。于瑞莲等[21] 分析了福

建省泉州市不同功能区大气降尘中重金属含量，发现重金属的生态危害程度从大到小依次为工业区、商

业区、交通区、居民区、农业区。以上研究大多集中在城市功能区，而公园绿地、附属绿地等城市绿地

内的重金属分布及污染研究鲜有报道。本研究选取杭州市临安区 4种城市绿地作为研究对象，分析绿地

内 PM2.5 中重金属的时空变化规律及其影响因素，探究重金属来源，为城市绿地的科学规划和大气污染

防治提供参考。 

1    研究方法
 

1.1    研究对象

杭州市临安区地处浙西中低山丘陵区，呈东西狭长形地貌，境内多高山[22]。属季风型气候，四季分

明，温暖湿润，光照充足，雨量充沛。年平均气温 16.4 ℃，年平均日照时数 1 837.9 h，年平均降水量

1 613.9 mm。植被类型为亚热带常绿阔叶林，素有“大树华盖闻九州”之誉的天目山位于临安境内。近

年来，随着工业、运输业的快速发展，大气污染问题愈发突出[23−24]。

根据 CJJ/T 85−2017《城市绿地分类标准》 [25]，选取居住绿地、商业绿地、广场绿地和公共绿地等

4种绿地作为研究对象，分别位于春天小区、衣锦商业街、五舟广场和浙江农林大学东湖校区。居住绿

地、商业绿地和公共绿地植物配植均为乔木-灌木-地被 3层结构，其植物种类、郁闭度、种植密度及成

熟度等群落结构特征基本一致。春天小区坐落在玲珑山脚，小区四周被城市主干道围合，交通便捷，有

3个出入口，绿地率为 42.5%。样地位于小区的 3号楼与 4号楼之间，四周均由高层建筑围合，私密性

高，面积约 1 500 m2。乔木层植物主要有杜英 Elaeocarpus decipiens、乐昌含笑 Michelia chapensis、桂花

Osmanthus fragrans，灌木层植物有海桐 Pittosporum tobira、红花檵木 Loropetalum chinense var. rubrum，

地被植物有麦冬 Ophiopogon japonicus 等。衣锦商业街位于临安区中心位置，是重要的商业街区之一，

人流及车流量大。样地选择在紧邻浙江农林大学衣锦校区南门处的公共区域，面积约 1 800 m2。乔木层

植物主要为樟树 Cinnamomum camphora、紫楠 Phoebe sheareri、荷花玉兰 Magnolia grandiflora，灌木层

有石楠 Photinia serrulata、荚蒾 Viburnum dilatatum，地被植物为麦冬。五舟广场位于临安区东北部，是

重要的市民活动广场，日常人流量较大。广场以硬质铺装为主，少量点缀紫薇 Lagerstroemia indica 和杨
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梅 Myrica rubra，四周空旷，总面积约 4 500 m2。公共绿地选择在浙江农林大学东湖校区的学院楼 4号

楼南侧，为师生活动、交流空间，面积约 1 600 m2。乔木层植物主要有冬青 Ilex chinensis、玉兰 Magnolia
denudate、鹅掌楸 Liriodendron chinense，灌木层为山茶 Camellia japonica，地被植物为麦冬。 

1.2    数据获取

在 4个绿地的近中心位置，距离地面 1.5 m处各布置 1台智能中流量 TSP采样器 (KC-120H)，并安

装 QMA石英纤维滤纸同步采集空气中的 PM2.5。因持续低温、降雪及梅雨季降雨等影响，采样时间选

择 2017年 3月、4月 (春季)和 2月、12月 (冬季)，每月分别于月初、月中和月末各 1 d采样。每天连续

采样 8.5 h(8:00−16:30)。要求试验前 1周内无降雨、大风等情况发生，采样当天天气晴朗、无风或微

风。采样前用锡箔纸包裹滤纸，置于马弗炉 (设定温度 450 ℃)中灼烧 4 h，除去滤纸上原有的有机物及

杂质，之后将滤纸静置于恒温恒湿箱 (Premium ICH，设定温度 25 ℃、相对湿度 50%)内 48 h。取出后使

用电子天平 (SI-234，精度 0.1 mg)称量和记录滤纸质量，重复称量 3次，取平均值作为滤纸采样前的质

量。采样完成后将滤纸再次在恒温恒湿条件下处理并称量，记录滤纸质量，方法及步骤同采样前。滤纸

前后称得差值即为该时段内采集的 PM2.5 质量。将采样后的滤纸放置在特氟隆容器中，依次加入去离子

水、浓硝酸、氢氟酸和高氯酸消解。通过电感耦合等离子体质谱仪 (Elan 9 000)检测滤纸上镁、铝、

钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、砷、镉、锑和铅等 17种元素及各元素质量浓度。为

确保试验结果的有效性，同步检测空白滤纸上的元素，结果表明空白滤纸上的各元素质量浓度均低于检

出限值，因此检测结果有效。 

1.3    分析方法

富集因子 (enrichment factor，FE)是用以定量评价污染程度与污染来源的重要指标，以满足一定条件

的元素作为参考元素，以样品中污染元素质量分数与参考元素质量分数的比值与背景区中两者质量分数

的比率[26] 来表示。公式为：

FE =
(Ci/CR)样品
(Ci/CR)背景

。

其中：Ci 和 CR 分别表示污染元素 i和参考元素 R的质量浓度。铝是常用的参考元素，杭州市锰、锌、

钡、铬、铅、镍、铜、钴、砷和镉的土壤背景值分别为 346.00、62.10、62.00、49.70、22.40、20.90、
15.00、11.60、7.50和 0.06 mg·kg−1。当富集因子值小于 10，表明元素是非富集的，主要为自然污染；当

富集因子值大于 10，表明元素已富集，主要为人为污染。

主成分分析是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量，转换后的

这组变量叫主成分[27]。大气污染物来源广泛，通常多种污染源会存在一定的相关性，找出有一定相关性

的污染物重新组合成一个新成分，在此基础上用 Spearman相关系数分析污染源的相关性，可以进一步

明确污染物的来源。 

1.4    数据处理

采用 Excel 2010统计和整理数据、SPSS 22.0进

行 Spearman相关性分析、Origin 8.0作图。 

2    结果与分析
 

2.1    绿地内 PM2.5 质量浓度变化

由图 1可知：4种绿地内 PM2.5 质量浓度冬季平

均值为 (102.68±9.43)  μg·m−3，春季为 (48.34±5.13)
μg·m−3。2个季节 PM2.5 质量浓度均超过 GB 3095−
2012《环境空气质量标准》[28] 规定的二级质量浓度限

值 (35 μg·m−3)和欧洲空气质量准则[29] 规定的质量浓

度日均值 (25 μg·m−3)。在空间上，位于城市道路旁

边的商业绿地，春、冬季 PM2.5 质量浓度平均值最
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图 1    不同绿地内 PM2.5 质量浓度季变化
Figure 1    Seasonal  variation of  PM2.5 concentrations  in  different  green

spaces
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高，为 (84.12±6.15) μg·m−3，居住绿地 [(76.41±7.30)
μg·m−3]和广场绿地 [(75.55±8.20) μg·m−3]次之，公

共绿地 [(65.98±7.40) μg·m−3]最低。 

2.2    绿地内 PM2.5 中重金属质量浓度变化

春、冬季不同绿地内 PM2.5 中铬、锰、铜、

锌、砷和铅等 6种重金属平均质量浓度占所测元素

总质量浓度的 17.95%，而钒、钴、镍和镉等 4种重

金属仅占 0.56%。 10种重金属平均质量浓度为

(2.83±0.52)~(429.69±22.59) ng·m−3，其中：锌和铅较

高，分别为 (429.69±22.59)和 (278.23±18.29) ng·m−3，

分别占元素总质量浓度的 8.65% 和 5.60%；钒和钴

较低，仅为 (6.22±0.59)和 (2.83±0.52) ng·m−3，分别

占元素总质量浓度的 0.13% 和 0.06%(图 2和图 3)。
由图 4可知：4种绿地内重金属总质量浓度平

均值不同，冬季为 (950.13±90.15) ng·m−3，春季为

(843.55±80.70) ng·m−3。春季不同重金属质量浓度为

(2.10±0.60)~(459.30±43.00) ng·m−3，商业绿地内锌和

铅较高，分别为 (459.30±43.00)和 (259.70±23.00)
ng·m−3，公共绿地内钴最低，仅为 (2.10±0.60) ng·m−3；

冬季不同重金属质量浓度为 (2.85±0.80)~(458.98±
40.00) ng·m−3，与春季相似，商业绿地内锌 [(458.98±
40.00)  ng·m−3]和 铅 [(361.30±35.00)  ng·m−3]较 高 ，

公共绿地内钴 [(2.85±0.80) ng·m−3]最低。4种绿地

内，钒、锰、钴、镍、铜、砷、镉和铅的质量浓度均表现为冬季大于春季，与 PM2.5 质量浓度的季节变

化趋势一致，锰、铜、砷和铅季节差异显著 (P＜0.05)，钒、钴、镍和镉的季节差异不显著 (P＞0.05)。
此外，铬和锌的质量浓度季节差异亦不显著 (P＞0.05)。
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图 2    PM2.5 中元素质量浓度占比
Figure 2    Proportion of element concentrations in PM2.5

 

 

0

10

20

30

40

50

60

70

质
量

浓
度
/(
n
g·
m

−3
)

0

100

200

300

400

500

锌 铅铜 砷 镉锰铬钒 钴 镍

重金属 重金属

图 3    PM2.5 中重金属平均质量浓度
Figure 3    Mean value of heavy metal concentrations in PM2.5
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图 4    春、冬季绿地内 PM2.5 中重金属质量浓度
Figure 4    Heavy metal concentrations in PM2.5 in green spaces in spring and winter
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在空间上，春、冬季重金属总质量浓度平均值从

大到小依次为商业绿地 [(1 023.18±94.10) ng·m−3]、居

住绿地 [(942.20±89.20) ng·m−3]、广场绿地 [(861.85±
84.05)  ng·m−3]、公共绿地 [(760.18±80.48)  ng·m−3]。
10种重金属质量浓度最高值均出现在商业绿地内，

最低值均在公共绿地内，其中：锌最高，为 (459.14±
38.00)  ng·m−3；钴最低，仅为 (2.48±0.60)  ng·m−3。

另外，居住绿地和广场绿地内锌质量浓度均最高，

分别为 (426.94±40.00)和 (403.00±38.00) ng·m−3；钴

均最低，分别为 (3.07±0.80)和 (2.65±0.65)  ng·m−3；

重金属质量浓度从大到小依次均为锌、铅、锰、

铬、砷、镉、镍、钒、钴 (除铜以外，图 5)。 

2.3    绿地内 PM2.5 中重金属来源

富集因子值反映了重金属元素在大气颗粒物中的富集程度，可分析自然来源和人为来源对大气污染

的相对贡献[26]。如图 6所示：春、冬季绿地内重金属元素的富集因子平均值从大到小依次为镉、铅、

锌、砷、铜、铬、镍、钴、锰、钒。由于天气条件和污染排放源不同，钒、锰、钴、镍、铜、砷、镉和

铅的富集因子值均呈现为冬季大于春季。钒、锰和钴的富集因子值小于 10，表明这 3种元素来自自然污

染；铬、镍、铜、锌、砷、镉和铅大于 10，表明这 7种元素来自人为污染。

采用主成分分析法进一步明确绿地内 PM2.5 中重金属的来源，结果见表 1和表 2。由表 1可知：主

成分 1的贡献率达 63.43%，载荷较高的为铬、锰、铜和锌。研究认为：铬是钢铁冶炼的标志性元素[30]，

锰为地壳源，铜和锌主要来自机动车尾气排放和轮胎磨损[6, 31]。绿地内铬的富集因子值为 24.51~31.10，
且与锰、铜和锌呈极显著相关 (P＜0.01，表 2)。主成分 1是自然源、道路扬尘、机动车尾气和工业排放

组成的复合源。主成分 2的贡献率为 13.17%，载荷较高的为钒、砷、镉和铅。钒的富集因子值小于
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图 5    不同绿地内 PM2.5 中重金属质量浓度
Figure 5    Heavy metal concentrations in PM2.5 in different green spaces
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10，表明其为自然源，镉与电镀镀种和工艺有很大关系[32]，砷和铅为燃煤排放。同时，铅是机动车尾气

排放的标志性元素[33]。随着中国全面进入无铅化汽油时代，机动车尾气排放已不再是铅的主要来源[34]，

因此，砷和铅主要来自燃煤污染，工业排放对主成分 2的贡献较大。主成分 3的贡献率为 8.30%，载荷

较高的为镍和锌，镍和锌主要来自机动车尾气和燃油[35]，所以主成分 3为交通污染源。综上所述，绿地

内钒为自然源；铬、锰、铜和锌为自然源、道路扬尘、机动车尾气和工业排放的复合源；砷、镉和铅来

自工业源；镍和锌为交通源。 

3    讨论

4种绿地内重金属总质量浓度平均值与 PM2.5 质量浓度的季节变化趋势一致，均表现为冬季大于春

季。临安地区冬季寒冷，近地层大气稳定，远距离输送的污染物不易扩散，加之植物进入休眠期，滞尘

能力下降，因此冬季大气污染较重。春季，随着天气回暖，植物生长迅速，对颗粒物的滞留和吸附能力

增强，这对改善空气质量起到积极作用。研究[36] 表明：PM2.5 质量浓度日变化呈现“早晚高、中午低”

的现象，峰值出现在 8:00和 18:00。绿地内钒、锰、钴、镍、铜、砷、镉和铅的质量浓度均为冬季大于

春季，铬和锌的季节差异不显著。雷文凯等[37] 研究表明：保定市 PM2.5 及其重金属质量浓度为秋冬季大

于春夏季，这与本研究结果一致。在空间上，由于机动车尾气排放和其他人为活动的影响，春、冬季重

金属总质量浓度平均值从大到小为商业绿地 [(1 023.18±94.10) ng·m−3]、居住绿地 [(942.20±89.20) ng·m−3]、
广场绿地 [(861.85±84.05 ng·m−3]、公共绿地 [(760.18±80.48) ng·m−3]。不同功能区内重金属质量浓度差异

较大，生态危害程度从大到小为商业区、居民区、农业区[21]。本研究中 10种重金属质量浓度最高值均

出现在商业绿地内，与其所处的地理位置有很大关系。商业绿地周边人流、车流量大，早晚高峰明显，

道路车辆的增加，导致排放的大气颗粒物浓度升高，其次是早晚温度低、空气湿度大，不利于大气的输

表 1    PM2.5 中重金属元素在前 3个主成分中的因子荷载

Table 1    Factor loading of heavy metals in PM2.5 in the first three principal components

元素
旋转后主成分因子载荷

元素
旋转后主成分因子载荷

主成分1 主成分2 主成分3 主成分1 主成分2 主成分3

钒 0.193 0.821 0.142 锌 0.873 0.267 0.804
铬 0.915 0.197 0.110 砷 0.478 0.669 0.322

锰 0.711 0.503 0.305 镉 0.271 0.762 −0.507

钴 0.581 0.507 0.512 铅 0.445 0.732 0.414

镍 0.272 0.130 0.896 贡献率/% 63.430 13.170 8.300

铜 0.798 0.327 0.294 累积贡献率/% 63.430 76.600 84.900

表 2    绿地内 PM2.5 中重金属元素的相关性分析

Table 2    Correlation analysis of heavy metals in PM2.5 in green spaces

钒 铬 锰 钴 镍 铜 锌 砷 镉 铅

钒 1
铬 0.400** 1

锰 0.593** 0.795** 1

钴 0.601** 0.718** 0.769** 1

镍 0.328* 0.366* 0.507** 0.647** 1

铜 0.434** 0.758** 0.795** 0.700** 0.546** 1

锌 0.481** 0.791** 0.726** 0.706** 0.379** 0.777** 1

砷 0.515** 0.602** 0.780** 0.751** 0.431** 0.699** 0.550** 1

镉 0.551** 0.326* 0.390** 0.278 0.206 0.350* 0.391** 0.455** 1

铅 0.625** 0.562** 0.812** 0.841** 0.533** 0.736** 0.594** 0.907** 0.463** 1

　　说明：**表示在0.01水平(双侧)上极显著相关；*表示在0.05水平(双侧)上显著相关
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送和扩散[36]。田春辉等[38] 研究也证实：商业区内的钛、钒、镍和钡污染较其他区域严重。本研究表明：

绿地内的重金属主要来自复合源 (自然源、道路扬尘、汽车尾气和工业污染)、以燃煤为主的工业源和交

通源等。杨怀金等[35] 研究发现：成都西南郊区 PM2.5 中重金属主要来自交通源、工业尘源和生物质燃烧

源，而杭州西湖景区 PM2.5 中重金属主要来自人为污染，其中，机动车尾气和交通的二次扬尘贡献率较

高[39]。周雪明等[40] 研究得出：北京大气中少量重金属污染为外地排放的一次污染在传输过程中形成的二

次污染，说明重金属受气象因素的影响较大，并且具有不稳定性。绿地内镉质量浓度较低，而富集因子

最高，表明这种元素存在强烈的人为富集，和人为排放有很大关系，这与 TIAN等[41] 的观点相似。城市

绿地能有效滞留和吸附大气颗粒物。合理增加绿地面积，可有效减轻城市重金属污染，同时，减少工业

污染排放，在商业绿地周边控制车流量、推广新能源汽车也能显著降低重金属质量浓度。今后应增加绿

地类型和数量开展研究，为改善城市空气质量提供更科学的依据。
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