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Abstract: [Objective] The purpose of this study is to evaluate the effects of swine manure hydrochar on soil
organic carbon mineralization, pH, conductivity and nutrients, in order to provide a theoretical basis for the
practical application of swine manure hydrochar. [Method] The hydrochar was prepared by swine manure
under 180 °C for 1 h, and mixed with soil at the mass fraction of 0(ck), 1%, 2%, and 4% for cultivation
experiments. [Result] Swine manure hydrochar could improve soil mineralization rate, soil mineralization
potential, and soil organic carbon turnover rate. When the mixing ratio was 4%, the cumulative mineralization
of soil increased by 1.52 times. The pH value of soil decreased from 7.17 to 6.67—6.98 during the cultivation
process, and the overall trend of change was first down and then up. The mass fraction of soil available nitrogen
and available phosphorus decreased to the lowest level on the 10th and 15th day and then increased. The soil
electrical conductivity and nutrient composition increased with the addition of hydrochar. When the mixing

ratio was 4%, the soil electrical conductivity, total organic carbon, water-soluble organic carbon, available
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nitrogen, available phosphorus and available potassium increased by 58.9%, 54.3%, 146.4%, 27.4%, 591.2%
and 88.6%, respectively. [Conclusion] Swine manure hydrochar can accelerate the mineralization of soil
organic carbon and significantly improve soil nutrient content, and is a suitable soil amendment. [Ch, 6 fig. 3
tab. 40 ref.]
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Table 1 Physical and chemical properties of the samples

PR BATHLBR (g ke ) AKIEPEATHLER (g kg ) BARE/(mg kg ) AW (mg-kg ) /(g kg) pH  HLFE/(uS-em)

IR AR 124.39 6.35 109.21 91.39 6.88 5.69 1308.25
+4 19.42 0.10 67.43 11.52 0.16 7.17 158.38
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Figure 1 Influence of hydrochar on the mineralization rate(A) and cumulative mineralization(B) of soil organic carbon
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Figure 2 Influence of hydrochar on total organic carbon contents (A) and water-soluble organic carbon contents (B) in the soil
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