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(1. WHIT R 22 RNt B 2E R, WV B 3113005 2. WRVTARAR A2 WivTas e Mo i Fh B 8 397 5 1
HESSCEE, WiV AU 3113005 3. WiTLARMRR 2= RE 5 el MAE P b 5 6] 3 5 01 1) Aol R o D Ry 2 o5 SIE 56
%=, Wi Bl 311300)

WE: [ By ] RBEA Y@M Prunus mume F3E R AW EZRE R E., WRKY ARZ —£E T 242 THY THEEA
F, b pdE A it Fid A2, T AR WRKY KB xTIE A S ALK R (ABA) e &, MRS @ F A LA E
ES, [ F&] At B4k’ Prunus mume ‘Guhong Zhusha’ ##t4t, i#id K4 % PCR(RT-PCR) £I&3% /37
2 A WRKY2 $: % B -F, # %A PmWRKY2-1 4 PmWRKY2-2; R B 5 & 8 £ % & PCR(qQRT-PCR) » # PmWRKY2-1 F=
PmWRKY2-2 AR kBT E To ki 8X, [4R ] PmWRKY2-1 #= PmWRKY2-2 #9441 ¥ & 57 A 2 223 F= 2220 bp,
25 % A5 740 A= 739 AR B, .4 2 A WRKY £ ¥4 CH, 45354 H#; PmWRKY2-1 5 PmWRKY2-2 %% * 24
i, A2 ®#5 E #A Rosaceae A4 B SHARAL P. avium. #& P. persica. %= P. dulcis ¥ %% % %%, qRT-PCR 4R B
T EKEBFTELET, PmWRKY2-1 5 PmWRKY2-2 #8640 F; BLEBR (ABA) &2)5, PmWRKY2-1 5 PmWRKY2-2
R K B E AR, [ % ] PmWRKY2-1 5 PmWRKY2-2 T A LA AR R AT Fom 2, S+ TH %3] ABA #9if4%,
B6k1 %28
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Cloning and expression analysis under adversity stress of
2 PmWRKY?2 in Prunus mume
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Abstract: [Objective] Low temperature is a main environmental factor that influences the cultivation and
application of Prunus mume whereas WRKY gene is a plant-specific transcription factor which participates in
the response to abiotic stress process. This study, with an investigation of how WRKY gene responds to low
temperature and drought stress, is aimed to provide guidance for the directional breeding of P. mume.
[Method] With the P. mume ‘Guhong Zhusha’ ¢cDNA template selected as the substance, two WRKY2 genes
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were cloned by means of RT-PCR, named as PmWRKY2-1and PmWRKY2-2 before their expression patterns
were under low temperature and in the condition of drought employing real-time quantitative PCR (qQRT-PCR).
[Result] a) PmWRKY2-1 and PmWRKY2-2, with respective coding area lengths of 2 223 and 2 220 bp, encode
740 and 739 amino acids respectively, both including 2 WRKY domains and a C,H, zinc finger structure; b)
though with a distant genetic relationshp with each other, both PmWRKY2-1 and PmWRKY2-2 had a close
relationship with P. avium, P. persica and P. dulcis; c) according to the results of the real-time quantitative PCR
(qRT-PCR), both PmWRKY2-1 and PmWRKY2-2 could be induced by low temperature and drought treatment
And d) the expressions of PmWRKY2-1 and PmWRKY2-2 were significantly reduced after abscisic acid (ABA)
treatment. [Conclusion] PmWRKY2-1 and PmWRKY2-2 are likely to participate in the regulation of low
temperature and drought response of P. mume, yet might be subject to the regulation by ABA. [Ch, 6 fig. 1 tab.
28 ref.]

Key words: Prunus mume; WRKY transcription factor; gene cloning; expression analysis of genes

MELE Prunus mume JEH E - RIEGA A, FEFHEHR 3000 208, TRGHIXAENI R 2 A 2241,
Mg AL TS W VERCHR , TR AT IR AN T 5 . 7EAERIRN 16~23 C M X AE K RGP, iR -8 C
57 RS0 A 1% £ 28 i = b I il = I o I S s ol e |1 O | it 2y DL S E 7 1 N O
PEEXS . V9%, Wi, RESILARNG, EaiREES AR A KA, DRI E b3 i
B, AR ZRAEAVE I T XN REEE B AC , 7RI IX, HFEAM IR (IR F-3 C) W&
XIAE (B Wi, WoRME S e, Bk, PiEFM—EEMAFTMNEZ I MY, WRKY %
SR IR FEAEAE TAEY) h 08 B S R, FEAE Y e g 2B M SR A= W e i it R rh i o B
BRI, MR WRKY 45 Fll g FEE S 25 R, WRKY R 43 4 3 25 128407 2 1> WRKY 2514
A 1A CXy-sCXpop3 HXH (C,H,) BUEFFE 4544 s T2 & 14 WRKY Z5H 5T 14 CXy-sCX5y03HXH
(C,Hy) BUEEg4EHy s M4 14 WRKY Z5H4 1 1 4~ CX,CX3sHXC (C,HC) B 45F" . WRKY %
BES5 T ZRAEY R, Gk Y E T YRGS 35N, PRV WRKYs &
BIREZ — 2S5 AR YA, W ERE S/ NE Triticicum aestivum™ . IKAF Oryza sativa" %51
M FE P F & € Musa acuminate . KiAE Gossypium hirsutum™ S5 0950 50 ARk, FEE AL R 4H 1
AN, S TFHAEHTIEMPT R I 20 AT 5 B8R TT, SR A MM PTIE | BT RS L Rt
THEERIA, B IR E 58 S WRKY L5, PmWRKYs TEMFAERIANFIZHA (. Z£ . mF . FEAUE
) A AFERERRE, i 174 PmWRKYs 0] g Z AT 7 S 710, ARIF5E LA
A B LLARET ‘ Guhong Zhusha” B, SR I %% 5% PCR(RT-PCR) £ AR sw B 315 T 24>
PmWRKY2 st HF, S8l A WAE B 22U AR IR L R R 9 e X, Al PmWRK Y2 i R FE A R A 9 oy
MR, LIRSS R WRKY 6 5% K 7E AL HT SE Fe 20 18 PV AL A o 25 A

1 #MEE 7 *®

1.1 #EYFR S e

MEAE CHELRED Ok AWM MR T IR . REAKHE S, TR FEN 1 FEAR%,
T IMABKAIEIFF, S8 PENG %7750 b, 1R 50%, SR 16 W8 he ik (2 <C) &b
PR EURERTE] R O(ck). 1. 2. 4. 6. 12, 24, 48, 72 h. K 200 mmol- L™ {1 H &% B A WAL T 5 4k
M, HBFERFE A 0(ck). 3. 6. 12, 24, 36, 48 ho K] 100 pmol- L™ i # iZ (ABA) AbFR, HUFER [E]
0(ck). 3. 6. 12, 24, 36. 48 h, FTAFfifke M RAE S L BV AR, RAFT-80 C, 3 AW EH .
1.2 FHik
1.2.1 RNA #ZH% cDNA 4% RNA MHRECR I 3 K6 R 202 5] #Y UltraClean Polysaccharide and
Phenol Plant RNA Purification Kit, 77 & 2 i 0 & 09 2 B Ul W1 45 . cDNA 9 & MU AR 4 TAKARA
PrimeScript™ RT Master Mix (Perfect Real Time) Ui B 7E K F 47,
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122 ARy L% JE k05 A N RIS E i IR 1 PmWRKY2-1 Fl PmWRKY2-2 J¥41, F|H Prime
50 SIS R D), LB ZRE M cDNA MR, F r-Tag DNA B 4 #i#k4T PCR
B PSR 95 °C FHARYE 5 min; 95 °C ZEME 30s, 54 CiE Kk 30s, 72 °C FEMH 3 min, 35 PMEH;
72 C 4EAH 10 min, PCR ¥4 7= ¥ 22 U I DS a 7] & (w1l )5 3% #2281 pMDI8-T 2 4& (Takara A A, K
), AL KR AT Escherichia coli DHSo J3%5Z S AN M J5 PRELBHPE FERE, 28 PCR B ilEJ5 ik (R IN A
FRBHZ A FRA AT .

x1 ERARERREAASIYET

Table 1 Primers used in Gene clone and Quantitative real-time PCR

FHi L7/ B FFHI(5'—3)
PmWRKY2-1F ATGGCTGGCATCGATGA
PmWRKY2-1R CTACATCTGTGGTCCAAG
S
RN PmWRKY2-2F ATGGGATTTTTAAGAACC
PmWRKY2-2R CTAGTACGATTGATGACTGCTTC
QPmWRKY?2-1F GTCCCCTTATCTGACAATACCTC
QPmWRKY?2-1R AAAGCGAATGAAGTATTTATGTCCT
N QPmWRKY?2-2F TCCGTTGCTTCCTCCCAATGATGAC
SMHESE REPCR
QPmWRKY2-2R CAAAATCTATTGGTTGTTGCTCC
QPmEF1aS CGGATTCAATGTTAAGAATGTTGC
QPmEF1aA AGAACTGGAGCATATCCGTTACC

123 FISAEREEFIN  RIATELEA; BLAST (https:/blast.ncbi.nlm.nih.gov/Blast.cgi) #1775 [H ¥
51 kb XF 40 A, F ORF finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) 7 £& 43 # ¥ B &) 2 HE , 8 F
ProtParam 7£ £k #X {4 (http://web.expasy.org/protparam/) T il & i 25 (1 B ) 4> & . BRI S d 5 AL
SOPMA 7££k T. H. (https://npsa-prabi.ibep. fr/cgi-bin/secpred_sopma.pl) 7341 PmWRKY?2 £ [ i i) — gk 25+ 41
% ; FH WOLFPSORT 7E £ 4% 1 (https://psort.hgc.jp/cgi-bin/runpsort.pl) 7 il J K (1) IV 411 it 52 v 5 | F
DNAMAN 9.0 3X {4 X} 4§ 4. PmWRKY?2 & [ 57 5 H ALY Flr WRKY & H B4 L5345 ffH ClutsalX-
v1.83 FEFF AT Z A LT, SRJEHF Fe X4 S 4 A 2 MEGA 6.0 #¢Fh, FI 4B 421 (neighbor-joining,
NI) gt 240k BR, Bootstrap {EH 1 000 ¥X .
124 RREZSH USRI R o8RG cDNA, Ff#E17 58 m 280 5E & PCR. FIH]
Prime 5.0 ¥ 11 PmWRKY2-1 Fll PmWRKY2-2 s Y519, UMEIE PmEF1a NN S I . VAR RN
SYBR Premix Ex Taq [ (Takara, Kj%)10.0 uL, ¢cDNA 2.0 uL, b F#ESIH (10 pm-L™") 4% 0.8 pL, XWZE
K64uL, BANHMIEE3IRESE ., RVETFHHLIEL: 95 C HiAPE30s, 95 CAMESs, 60 CEM
30s, 240 PMEH; SRIGLL 95 CHFEESs, 60 C 5L 1 min, 95 C FFLE 15 s 1E MR th & o i )7,
e M 2 -AACTL T H AL R A A 3Rk
2 BERGAMN
2.1 #§% PmWRKY2-1 #1 PmWRKY2-2 EEHEER £WIEBF 0T

FIHRE RS AT PCRY™ MY, Gl e . #fb . WP )5 R15 4% 751 (CDS). P25 R s
PmWRKY2-1 Hl PmWRKY2-2 ] CDS K 43 51 g 2 223F1 2 220 bp([& 1), 4 i () & FE B2 %% B 2> 9 N
740 F1 739 4>, A F RSN 79.94 A1 80.98 kD, HISZEHE 255070 5.65 Fil 5.82, AfaE 2500
)k 53.93 F1 53.82, RE Wi 48500 5 M 54.18 F1 59.53, MM EAT AN EER A K. HFELYEKRE
(GRAVY) 733l 24 —-0.774 #1-0.743, J& T 2R /K PEEE F BT o 7 20 g 5 A2 TN 45 2R 75 © PmWRKY2-1 il
PmWRKY2-2 B3 T4 A%

LA A5 5 s (8] 2): M348 PmWRKY2-1 F1 PmWRKY?2-2 1 [R RN 45.87%, SHIHE
I¥ Arabidopsis thaliana #) AtWRKY2 L4354 51.26% Al 32.07%; FHi PmWRKY2-1 5 R G2 BE
P. avium(XP_021826759.1). #k P. persica(XP_007206427.1) ft WRKY?2 [&] 5 ¥ 43 5~ 98.65%, 98.78%:;
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PmWRKY2-2 5§l 2= P. dulcis(XP_034218428.1), #k
(XP_007207009.2) i) WRKY?2 [R5 L5351 98.51%,
98.11%, 5 H 2 Rosa chinensis(XP_024188041.1)
WRKY?2 [N 77.97%., #E—H0Wr k8. ik
PmWRKY2-1 f1 PmWRKY2-2 & &8 7 51 5 H Al
WRER T —H, HaE 24 WRKY 455 5
14~ CX4 sCXy 03 HXH(C,H,) B B 454, @ T
Group I (& 3).
2.2 #7 PmWRKY2-1 1 PmWRKY2-2 EH K =
R LEMT

OB A R g R B OR (B 4):
PmWRKY2-1 £ 15 450 th % 75.68% BTN Hh

2 000 bp

1 000 bp

750 bp
500 bp

200 bp
100 bp

M. DL2000; A. PmWRKY2-1; B. PmWRKY2-2
B 1 2/ PmWRKYV2ER&Y ¥

Figure | PCR amplification of 2 PmWRKY?2 genes in P. mume

. 10.81% 11y o W2JiE . 10.41% H9 KA F

3.11% 1 B 4% M 45K ; PmWRKY2-2 25 [ BT R A5 P AL 5 74.02% 1 TC LN & il . 13.80% 19 o B2

€. 8.80% MUY K BER 3.38% 1K) B A5 L5,
23 R o

FIH MEGA 6.0 #1463 M3 48 PmWRKY2-1 Fl PmWRKY2-2 250 )7 51 (19 R Ge AL b (18] 5), 45 53

R ML PmMWRKY2-1 5 PmWRKY2-2 AR BAR, B

5 — Bkl Rosaceae 1 ¥ 1) 5K 2% < R AR

B o PmWRKY2-1 58k (XP_007206427.1), KR &L (XP_021826759.1) i) WRKY %% K R
T, PmWRKY2-2 54 (XP_034218428.1), #k (XP_007207009.2) i) WRKY &M E N —25, HMIK

h, S, 4

ME4E PmWRKY?2-1 373
Tt PmMWRKY2-2 REPIH 316
WK P2k PAWRKY?2 GSTER 3 373
fill4* PAWRKY2 KEETHGEDVGSHEFLI 316
% VVWRKY?2 .s.agsppz.rmqn 378
#k PPWRKY2 GSTEHSFTLDEGED 373
#k PPWRKY2 REPIRGEDVGSHEFL) 316
HZ% ReWRKY2 KEVIHGECVCTHQL . 5 306
W AIWRKY2  cceeeecens HQEE e . ) ER 333
*Hﬁjﬁgm g ed ynwrkyggk vkgse p ct pncgvkkkvers g iteiivkga PP

Mt PmMWRKY2-1
HE4E PmMWRKY?2-2

BEE <8 1GSENPLNENREDT
BEE A CASLGESFSFRETSEM

BRI EHEAE PAWRKY2 B sa81cs8ne1BREET
it 2= PAWRKY2 AGASLGESFSFRETSEY

1% VVWRKY?2 .sgze;?gupzsgmmx
Hk PPWRKY2 SARIGSSNELNBMREDT
#k PpPWRKY2 AGHSLGESFSEDETSEM
7= ReWRKY2 ARASLGAFSEREMSEN
L IF AtWRKY?2 . B SEHGVECE
R 2R nzz

H$46 PmWRKY2-1
¥4 PmWRKY2-2

WK EHPEBE PAWRKY2
2= PAWRKY?2

1% VVWRKY?2

Hk PpWRKY?2

Bk PpWRK Y2

HZ ReWRKY2

MR AIWRKY2

AH F) L R

C,H, M B 41
GE‘j":CNQS§5
NVIELSEPLET
;ﬁm chcgs
TSVVIELSEPLST
E8s . BCEEFCNTSTT
'ch;a;'é_s
LSEELST
SYVIDLSEELEA
.FEYGNGSES

WRKY2 75638

M4t PmMWRKY2-1 ViBErEHTuscoiSsRG. .. . . 1gTheRRezEERYans AR ElessEc. ... 640
ZL)E PmYVRKYZ—Z - NCENAHESTANEQE . ALALPRSSNNPRPETQUQDLAL HPEFHEEYLRS 504
WO EH ARk PaWRKY?2 [o ESHTMSGQASSAG. ... IQTHERRPEESGUANSMARGERESSLG. . . . . . 640
{24~ PAWRKY?2 NAHESTANAGE . ALALPRSSHNPREPE L KEEFHEEYLRS 504
% VVWRKY?2 GTGEAGRAAAAARAATVCTHVARSDSSQVEN . MARRIREBSEG. . .. . . 647
Bk PpWRK Y2 BCESHTMSCORSSAG. . .. . IQTHCHRPECSQUANSMARBERESSIC. .. ... 640
#k PpPWRKY2 rggnsagasr-s BNAGE . ALALERSSNNFXPETQUGLLAE HEEFHEEYLRS 594
HZE RcWRKY?2 c INSSSANGHEPTQS. . . . ALALSRNTNIPXFETQUGCLAPHTRXPEEHDEYIRE 581
T+ AtWRKY?2 c GGEGCSCNCNSGESARY. . . . . . SHEYENGHHESEPER. . GRRIBQVITNNG. ... 596
*H ﬁﬁ%ﬂiﬁ c i vrkhverash lk vlttxesk.‘mh vpaarns h =
C,H, B fa 41
= =
2 #ith LtbihFh WRKY 2857 69 resd

Figure 2 Amino acid sequence of WRKY between P. mume and other species
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PHRKY PHRKY?
e ot
1 250 500 750 1 000 1250 1500 1750 2000 2220
PmMWRKY2-2 _
"HRKY "HRKY
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B 3 PmWRKY2-1 # PmWRKY2-2 & WRKY % #3%
Figure 3 WRKY domain displays of PmWRKY2-1 A1 PmWRKY2-2
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K4 PmWRKY2-1#= PmWRKY2-2 & & i ¢ — A% #)
Figure 4 Secondary protein structure of PmWRKY2-1 and PmWRKY2-2
99 JrWRKY?2 (XP 018814204.1) ¥tk Juglans regia
75__|: JeWRKY2 (XP 012081853.1) 42 [1# Populus alba
98 VVWRKY?2 (XP 002265612.1) %% Vitis vinifera
HbWRKY?2 (XP 021678272.1) ELFEIG M Hevea brasiliensis
78 — oL MeWRKY?2 (XP 021632587.1) A% Manihot esculenta

" [OPmWRKYZ-l

100 [ PaWRKY?2 (XP 021826759.1) BRI EHHEBk Prunus avium

6 751 PpWRKY2 (XP 007206427.1) ¥k Prunus persica
TcWWRKY2 (EOY 11828.1) AJ 7] Theobroma cacao
61 CsWRKY?2 (XP 006474751.1) &I #& Citrus sinensis
23 ——— QIWRKY2 (XP 030929882.1) KHt 4k Quercus lobata
59 100L————ZJWRKY2 (XP 015881614.1) BR™& Ziziphus jujuba
” GhWRKY?2 (NP 001314100.1) F Mk Gossypium hirsutum

AtWRKY?2 (AED 96743.1) f s I+ Arabidopsis thaliana
MeSUSIBA2-like (XP 021629940.1) BRIXM Jatropha curcas
96 ZjSUSIBA2-like (XP 015875770.1) BR & Ziziphus jujuba
JIWRKY?2 (XP 018815628.1) #%#k Juglans regia
] [ HUWRKY2 (XP 021281745.1) 2235 Herrania umbratica
100 L TcCWWRKY?2 (XP 017976834.1) A] A] Theobroma cacao
RcWRKY2 (XP 024188041.1) HZ= Rosa chinensis
L 14 AdSUSIBA2-like (XP 015962000.1) E1£4E Arachis duranensis
10 QIWRKY2 (XP 030970823.1) K4k Quercus lobata
7 ® PmWRKY2-2
100| [ PAWRKY2 (XP 034318428.1) #tZ¥ Prunus dulcis
0.2 100t PpWRKY2 (XP 007207009.2) £k Prunus persica

B 5 Mithdidpfy WRKY £ 5B 57 & Sk ekt o1

Figure 5 Phylogenetic tree analysis of the amino acid sequence of P. mume and other species
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W Jatropha curcas (XP_021629940.1) . BR* Ziziphus jujube(XP_015875770.1), &4t/ Arachis duranensis(XP_
015962000.1) 25 SUSIBA2-Like(sugar signaling in barley) Ji PR i) 2 5% 5 91 A7 — 5 B9 AR BLE
2.4 PmWRKY2-1 #1 PmWRKY?2-2 7£3E 4 ¥ e 70 ji % B 4b I8 T I R %

IR T 5 (H B A FE )5, PmWRKY2-1 Fl PmWRKY2-2 Fik¥ k4 #7254k (K 6), 1EARIRANFE
T, PmWRKY2-17E 2 Fl 12 h i Rk & ey, 40 A2 % BT 5.0 f 44 %, 2/ 2 TR B
PmWRKY2-2 ik 2 IE BTG FREMBESE, 76 6 h AR R fE, XTI 2.4 5. 7+ 548
T, PmWRKY2-1 Fl PmWRKY2-2 WA N LG TR, PmWRKY2-1 [3RIAETE 12 h ik
B R H R Xf B 53.9 4%, ZJGME R TREAESE; PmWRKY2-2 (RIS ETE 6 h AbIK B H K, Xt i
19715, ZIE S S, ERER (ABA) AH T, AL 48 hil, PmWRKY2-1 fl PmWRKY2-2
WBE T (P<0.05), ULHHHRIRTTHE ABA il .

N=| = ey
6 . IR 60 - Haag 3 16 - ABA
5F a 12 a
I i 1< [2a
4 - a
%PESJ 3 0 H«é 0.8
- c ca [|a . b
E 2+ b |[2b abC E c c b
< T lde|le d < 04 c c
1 d d, e e 19 pe
¢ f g &
0 0
O(ck)l 2 4 6 1224 48 72 Ock) 3 6 12 24 36 48 Ock) 3 6 12 24 36 48

t/h t/h t/h
O PmWRKY2-1 N PmWRKY2-2

RRSRRRE R % (P<0.05)

B 6 dFAdhfe ABA LF2TF 4 PmWRKY2-1 F= PmWRKY2-2 4 ik
Figure 6 Expression levels of PmWRKY2-1 and PmWRKY2-2 under abiotic stress and ABA

3 #tig

WMYEER R BTS2 B 2R ERZN, MRS T 22 WLWEmEy s Es . R
i J3 A S b B A AR AR e 2, TR T RE S SR AT . R TE R IUE I R 2 R A
TE R T B 2= S IR BN, MarT . AR AR AR A 55 22 O T Ol PR R, DAHRAE RS R AR
. TREWE., EAEYmNIGE . TR, A Y i WRKY ¥ 37 2% T &
ZAERMYY, HarEEMEEIFY . Fhl Solanum lycopersicum™ . F K Zea mays ', SER Malus domestica™
IKFEE SR 2B T A HGE .

AWFFE SEWE AR AT (1) PmWRKY2-1 FI PmWRKY2-2 #8545 2 A~ WRKY Z54948, C sl Ry CoH, Al
BEREE R s 2 ANE AT 2ZE SRR, HMECN 45.87%; 55— R ) 0 35 2 5 R
PmWRKY2-1 5 #l B % AtWRKY2 #9 # ) #: & 51.26%, PmWRKY2-2 & 32.07%. 1H 7% —#&1 &,
PmWRKY2-2 5k XAB (XP_021629940.1), FRH (XP 015875770.1). %464 (XP_015962000.1) 5 A% 4 £
SUSIBA2-Like Z 38 17 51 B A — 2 B AHIYE , A 0F55 0 ki SUSIBA2 J& T WRKY #5 53 K F#8 Z %It
Z 5K E YA AR

& EEER L. REA T WA % Malus hupehensis MRWRKYA0b J& K Feikm B8 FAE T
Pt (IRIRAC IR R ¥ K Cucumis sativus CsWRKY46PY FIKFg OsWRKY76M" " 5 B FTh G F Ry 3
KR, S5AHFGE T ML PmWRKY2-1 Fl PmWRKY2-2 3 PG I8 g mig o #a 3 — 3, T R4
PmWRKY2-1 Fl PmWRKY2-2 (3R W E LG TR, SmRiAa il L 1725 50 45 10 5.
ZHU 252V L. $pa S vhid 235 H 2 Ipomoea batatas IBWRKY2 Fl77 38 Fagopyrum tataricum FtWRKY10
AE P2 = R SL A AR A BT R0 ZHANG %P7 E B 15k -3-4 iR (indole-3-acetic acid) 4b 3 [ 4 il &
Trifolium repens, X WRKY2 1 R 50 i 35 AT DA 35 A 2 5l o A0 R 2 o JTANG 2628 8. ABIS
ABI3 ., ABA2 Fil ABA3 %5 ABA &2 FIE A SHIBTIT 2 4~ WRKY2 B335 i 5 Fh 185 & Fil & 19 &
e, AT, ABATET, MEAE 24> PmWRKY2 5K (4 22K B k), 5000 k5 30 7 53 iy
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