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Abstract: As one of the key processes controlling global carbon storage, carbon cycle in coastal wetland is a
process significantly affected by nitrogen input due to the inshore water eutrophication. Given the fact that
nitrogen input affects the carbon cycle of coastal wetland in a rather complex way, carbon cycle model has been
selected as an effective method to clarify the process with the ultimate purpose to evaluate the carbon storage
function of coastal wetland under the global climate change. With an review conducted of the migration and
transformation of carbon components in coastal wetlands at different interfaces of atmosphere, vegetation, water
and soil and a summary made of the regulations of the response of carbon cycle on nitrogen, it was found that
carbon storage and flux is affected by multiple factors. Also, on this basis, carbon cycle models with carbon,
nitrogen and water related modules were introduced along with the efforts made to promote their adaptability to

wetlands and their application on wetlands, which shall provide reference for the employment of the model in
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the description of the carbon exchange in coastal wetland under the influence of nitrogen input. Finally, it was
concluded that, to further develop the model, closer attention should be focused on the tidal process with
nitrogen input and the promotion of model simulation accuracy. [Ch, 1 fig. 1 tab. 126 ref.]
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Figure 1 Key processe of carbon cycle among atmosphere, vegetation, water and soil in coastal wetlands

1T b ad e a2 B 2o Ff R R A SR [T, et Bk P28 10 S A8 PAS AE A A E e, R s R T
FI IR BERS 7 S BAL, BRI/ B WEFE 07 1) ] B850 2SI AR RS . RIS S AU A A
AR TR, KB T RN O A R AR AR, A i TR O T Y
R MAh, SRR IRH AR, — 75 T 2 BRI ek - S8 68 B i 73 i s i 0 B R
o0l g DR B AR DRy BRI ) T R PR Y5 5 — O TS AL 4% DT Sl 1 K R 8 IR AL A AR A R 2k
A, ol Y R i DA S Tl e B T ) R BR A A S AR GE R, R R i M s ORI A U B PR T [ B .
X EHR B BRAR R R P IR . BRI AT I T, DA RERR A TS A R A SR 1 T TR e i 7 B
BiIE R A AR AL, R A A ik DR A

2 RN B AR IR AR B9 B e AL

2.1 TN RSN AE 4 ik B B AL

U A8 R R AR - e AR A CO, A Rk e HoHE O &, Frs 4l Refe gt | sl il =k
AEO FIE R RO EETE I, R A e R REY, femi b gl o, B
FIMAP A LB E T B, A vE YR, JRA BT R EEAHLE (SOM) IR R . (H R
AR BRI, R A B R AIRCRD, AR YR e a8 IR YR
AIBR A LL , B 2 W Rl A (0 A AR R RUBR ] BT A S R e, R A X U A B9
Wi 10755 FE P AR R A L LA 5%, SR T2 L 91 Ta] IR LAt M A BE AL PR RS, DS B 4 45 2R I AN ofe
—o b, XL AR TR AR, UUSCRFE B S WTEA S R G RS )P

TEREYIAE BT AT, S A S B A, R A R P i LR P RN R A R
BB, AT LA Al b A0 2R G anfar i 1 4 BRAL fe S (A HIRY SR B0 Rt R0 i SR B0
ARG, R AR A 2S5 E7, 5 HAR S B i SRR FDE & A AR 15 W R A A,
[F] DRI S IO A S R A%, e 2 A A B i i A I R 2 00 Ui Al 2 S i A 80 Y
AL, AT AR R R, EXHEY O SR S YD AR EEAR 2, B
TS Al AT REAR HH A [R) A 25 00 R TR 4 USRI 25 M Bt 2 3 A e BE 0 P LR AN TR 52,



886 WroIL R R K A R 2021 410 H 20 H

TS I 25 R LU A A5 R B8 T 22 MR VAE 0 0 B VR FHY ., SRR B B A7 RIS W IR BE ML, AT LA o 3
INZEREAE AR AERFE TP, DTS WA IR DR, BRI, AEER T AU ARTREATE 5 52 el AL il 1) 1
o, RIS IR TR SR R P R A 3 P B SR I B AR
2.2 FEINFN0 LT E LS

i A28 2R G BTG PR B TR A Lk (SOC) iR HIOCHER R M), ZZ M AR . A
A Whs M BT R S50 S, AU A FT RS 3L SOC VR T e A —3 e, A A
XF - AL B e 43 R R 2 MEH, RIERUEWE T Y A . A R ek
PR E TR, SR EIEMEERE AR L, RS mA HLT R, BRI R S S
FEBEAE =Ty, AR IS e R AR AR AR, LR AT R R R AR i AR RO S G xR M - 3EGUAE W (]
BmA LM R, BRSO ZREE St EF e, AAMEX SOC A7 “ B R RN ”
(priming effect)™, B34 ny& %90 0 5m A e dE H A VLUR 0%, S0 20 TARA R, IRz
S ES, WRRHUEY EYELA T kK AR IR, EWReE kIR T SOM M 454 AAb
TrRAKER, A EFEEES, MEYEYELT o AARIEWIERR ,, E2R BRI
YA AR A

IR E T AR AES RS, ZWM5RIEN] . AU A S BRI SOC 43f# T il CO, HE
B, SRR 2 B AN N R WL EVER, BInAESRG IR EYAIE . KA &E ., BES. K
R AT SOC 7, A HEVE I T RE S L3R4 . AEBE . - SRR A 1 AN 1 B PRI 0 RUAH AR
AR MTEm AR AT, SOC 73 W 2332 2 B>, 4= 98 e i) A RCPEREARDS S DI FnJ 10)
MRS ARG RWMAFAEZE T, PIE SR -8R o RS Jn, DAV 7 b fin s SOM 43+ . (5
MWAHE, KAMANAEZRSG T, £ SOC HH YA WLk (MAOC) & Al e A& &AL, T2
MR SOC MR 2ERL Ay, W/ IR S A SE AN E B BT A 20 b, X AT B2 T ASERE A MLIBT %) 43 LA
K ARUTRR Pt ABGsis 5 | L it
23 FEAFMKERRL SR

VR 2N ZR G0 N RN 3R G 8] A B B 02 4 BRAIAIG PR A S S 1) B R 400, gt , B4R
it 19 Pg BRI TR G R G M 17 ac e, H 4245 0.3 Pg DOC F1 0.2 Pg POCP™, K 2 % fili U6 14
POC i Hb R A2 i 5l A B, AFAE Tm M2 1 HEK Kb R oK b 0 rl s A AL (DOM), )38 ok v
T 55 ity b [R] 9 7K S A T A, KA A At R A TS VT Rl [ i 1 o VR TN b e ) A ) o
R SCHMER , ZEUmBE A v RIAE T, BEIEIRHL K DOM [ 2 35 ) R T A HLRR A 7= & 1Y
173190 FfRpin] [ $E 424 35% () A LR (TOC)' . Ak [n] 1)t £ 2 P v A 25 R Gedi T 1 2. (NECB)
H R E ZERIES), 2 NECB HE T8 M e 2k 2o 78 rp HL A ¢ v o A AN e Pk R AL B 93 o e
Tl A3 R 7K A R 28 e 2 FPag AR, EAR ML T UK DIC MR EE R iy KA, (E 47 /K AR A8 4 i %
KT HT KHEKE SR, 5380 9% 1 T Bkt 28 0K T b T oK ik 4 3 38 . e 28t T /K ) DIC AN
DOC i 34 Ly i il i 1 1 /N EE g, DR e A et LR 75, S0 0% o 32 e s

NP R T W, PEIRAE R AR KER 43 CO, LA DIC B iR, 5 5947 J1 (GPP) i
A S Y A Yy bR B DOC R #E TR A . M & B LS B 1 4 A& (AGB), JfH il
WK FE DRI, R A S8 iz DX AMIE Bk i R R Rk v BE0 7R U A DY B
o, IR ECHERCT 5 O BB AR [m) B 2 BE RS AN R B TR S I HRTE T, PR U AT RSN
#B8 NECB MU maAR/ N, HZ, 7EMIGRHAYsk, T EHEBOmBE i, By A A e DAHRIH Ak Y
PR, AU AR KRG I RGN SR AEE . R, QRIS 1 N FS AT A R AR5, IR K
FARAR U A b e FR 22 ) B TS ) o R A 38 2k 3G A ek 8 A i) DIC F1 DOC By I, X3
FH 3480 % T D A 2 2R 9 1) SR AR S8 e ) AR @R K S R [ i o[RBT, AEKAE B TR R T Kz
fisl, RIZDURY0) B AR IR AR 8 A AE s Y H i AR TR 5 RS A IR YD 1 8 2ok R AR i)
Rk B, g & A DU TEE R, FE sl frh, FE YY) 45 A A L e S H 3 1ok 4 7 i
A S A RS, R RE N KA B TR



55 38 B4 5 4] WRAESCAE AU A R IR B i PR AR BB . S 887

3 AWMARHESRARREANRET %5 0K

ki 1 A= 25 R G AR G 7 I T4 (abundance) . Bf (coupling). i (flow). 3 (field) A, 434l
FOREUE . APV SSHsh RAAFER U, FERERI Rl RO P A T R — 4
iy R MRF N, A S R ORISR A L A B TR OGS A sSR T, R
(A RBATE PRS0 38 5 LAAS JE S O ) ) B (AN R Bl 4F) X R GEARAS AT R B, I ELACRE i Bl e — 3l Ay i 2
1T S A A A5 D 5 T LA AT 2 B[] ] o 174 — P s i i o R 2L SE IR T AR . 2 b3k Ak 2 S U X6 47 o
TEFRFITCZR B sh B0 A8 R R I AL R W) & BE RS M, FOESE T XA E R R B RS, R
TN AR RGN A SRS T 2R, Y ERIEE A — R LU/NS . B B, X
SOC. #H¥ e, HHES/KE . CO, WERRSAE R TRy, 13 EH ] RUBE ORI S5 . Rl
BERUIR 0] 255 K R R R AR S, S AR AR R G 28 (8] L B Z2H8 bRl DA 3G B A RO T
A I AR e A B XU A 2 R GRS R,

T WERA AR AR U Bk 2R e AR RS Hp R B Y (s, T DA AR AR X R B o A A A AR G AU A B )
N o — 7 TAT AT A3 Ao DA [ e 1 2R A A ) - R I TP e i AR AR S R, S — T TR R A
WMAEBRGE, @i JA PR E R R & LT, BT, FGHC A B 2 A 4Bk s Al
AR BEOR [R] 9 R R EGR A a R2 70, B, 24 1R AU RO TE i A A KT
AR, XSRS R R BRI A i A K R, R KO R T SR i RIS AR [,
IR, e HEASERY A T R o AR, BRIEISERI T 40 R8s . SECR AR 3 K2k, gAY
SRS BRI, TR MG CR, R AREHNERARSCHAT, B0 R BRI TR I
TELERL AR, AFE S HAH SC B i 9 e R . S BUERLR DG A7 850 S B 5 HAH 56 i i 1R
R, SCHUAER A AR, BB AR G RE ARG H TS @RS A N Tz,
TSR DU 230 o A S A B R MLy SR E R R G Dy RE, 38 5 255 A B LI LA K 2
KR AILREEH, Begiz H TR . RORBE BB 3 ] SRt AR A | 2oh B 5 5 A0 8 -5k
FERR AR, A, B S S A BELAL Sy, IS s SE M BERT R s AR B AR Mk, P T AHIR]
HI UG 25 AR B[R] BEXT 7 A 45 SR A AR ], DRIt 43 Ay P A 26 R B L P AR 78 51,

4 REONE U R R E IR ey AR A N R A R IR

4.1 FHENPNEETHRMEIAERNA

RGP RS F 5 A s, HATC St T & BLAT AR R 5 44 R B RN ) A0 |
FHBHL T i A 2 RS R GE R EERRAEFNALE], FRXE ARG o2 A 28 R G i G 38 19 7 =X Cnfb A %
BMIRBE . AT & A5 SEATIEAS, P B S A OIS S AR A LA B AR KA S R b
YV Z [l A8 e (RS R A 46 2 i BRI, LA 8 e R L AR ORI, 2RI )
AN BTG A e . AR TR A AR . R DL s O SRR, RO R AR
T2 [A)XELL oA, R AR RS B0 B B B R DA B g M RE Y, TN i B S A AR B ST ERARE S
AP B 3

VS TR N MBI PR P B A Wy AR A W IR R AL R IR By, 8 LA T S A . MR R A R
FERIOEIE DS TR AR OR (s BE By 250K A5 X)L R RUEE A BAE A TR 5 SR 42
BREEAEAE = B S ok, SR AT (] RIS RF LA [ R R AL A, ISR — A N T
B A AL SN E P o TR A S RGN R 22, SIS NS EOR A bt B AR T 27 B i 5
%, PRy ad BRI T 3 o AR AR R N PR SRR A S R HTRIAE . FE, R
T T RS AR IR A S RGERE M, RGBT B A0 2 (B A A B A, IR i g
K, BRAAS A SR ME . HAT7EM R S BB A S, W R DL BRIz A
DNDCGI #E#57) . PEATBOGGS 24y . TECOGE FEAR ), Biome-BGCGI FEREAY) . AVIMGE FEFE G
FEARL) . TEM(GE J&-i B RN A A) fl CENTURY (i FRAR AN ) A5 JUAP AR AR, sl o] 07 HH - U A B2 MR Y52 16 7
oA S R GRAE AT B AL (3 1)



888 RN/ NI NI e 14 2021 4£ 10 J 20 H
F1 BBEMMEEWFE R EER BN A
Table 1 Development and application in wetland of carbon cycle models
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