A oTOR KK F F IR, 2021, 38(5): 945-952
Journal of Zhejiang A&F University
doi: 10.11833/j.issn.2095-0756.20210403

oA A T AL T B S I 25 B
B, Bt x| ek, B p2

(1. Z RS A Y ERE N SRS FEALRE, =8 BY 6505005 2. 7 j R A S5
DA R RS SERE SRR, M R 6505005 3. m A TREYE LA RMAESREBE S5
B ZSOKSCE SR, VIV B 330099)

WBE: [ 869 ] KB RRAEAFY T K Cunninghamia lanceolata N THRIIEARA R FHLk Fea, [FE] A
MMELZRTEEEBAMRG EHRFALISARDFRAE, AL (10 2) RAWBE TR No; &R Nj; 7
f: Ny BR: Ny) FFohE4R 8, @B FIMNREIERF RN T RiFmst i f i, stz ¥n, [£%2] DR
AmEERG TSR (NHFN), AER (NOF-N) & RAMEM o4, AKEDHRKA N3, Now Njo Ny, SR
RENHEHZGTHER. QREHNEFEER B ERE R, HREFEHET REHL (P<0.05), OFF ZFH AR
FHAL (P<0.05), A RFikF | ALk EREFRNENALEFZ . L3RG FN a5, [ &R ] KA mZE
TREAMAL REs ik FE, 23 pH, BRI (ON) R LEBETREFLR LA MEDRELNWIZATF. £4
AAIHHZEEERVTERR X ELERSFRFHNE MR RN 2, B2 43 K40

KEEIR: R, REAGHER; REMRE; ARREA; BERS

HFESES: 87185 XHRFRERD: A NEHS: 2095-0756(2021)05-0945-08

Response of soil N mineralization to long-term N addition and season in
Cunninghamia lanceolata plantation

YANG Shiming'?, CAI Qiankun®, LIU Wenfei’, WU Jianping'?

(1. Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming
650500, Yunnan, China; 2. Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of
Ecology and Environmental Science, Yunnan University, Kunming 650500, Yunnan, China; 3. Jiangxi Key Laboratory
for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang
330099, Jiangxi, China)

Abstract: [Objective] With an experiment conducted Guanzhuang National Forestry Farm, Sha County,
Sanming City of Fujian Province, this study is aimed to investigate the effects of long-term nitrogen (N)
deposition and seasonal change on inorganic N and N transformation rates in the Cunninghamia
lanceolata plantation. [Method] Besides a long-term (10-year-long) N addition experiment with four gradients
(control: Ny, low: N;, medium: N,, high: Nj3), the cultivation experiment in sifu was conducted to determinate
the N mineralization, nitrification and leaching rates in response to N addition. [Result] (1) N addition
significantly increased the mass fractions of ammonium N (NH,-N), nitrate N (NO;-N) and total inorganic N,
showing the trend of N3, N,, N; and N, and the ammonium N was higher than nitrate N. (2) N transformation

rates increased with the N addition gradients, while high N addition significantly promoted the N transformation
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rates. (3) Seasonal changes significantly affected N transformation rates, and the N mineralization, nitrification
and leaching rates were higher in summer and lower in winter. [Conclusion] N addition significantly increased
soil inorganic N and N transformation rates whereas soil pH, C/N ratio and temperature may be the factors of N
addition driving soil inorganic N and N transformation rates in the C. lanceolata plantation. Therefore, closer
attention should be paid to the response of soil nutrients and N transformation rates to exogenous N input in the
management of C. lanceolata plantation. [Ch, 2 fig. 3 tab. 40 ref.]

Key words: N mineralization; nitrification; N leaching; global change; soil nutrients
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Table 1 Main soil physicochemical and nutrient properties under different N addition

Ahg pH AHLF(g ke ') AH/g kg™ CN B A/ (mg-kg )
N, 4.28+0.19a 30.5742.89 a 1.3520.14 ¢ 13.3+2.0a 27.14+4.58 d
N, 4.14+0.24 b 27.13£3.07 b 1.57+0.17 b 10.1+£1.4b 32.19+6.56 ¢
N, 4.00£0.22 ¢ 26.8243.19b 1.62+0.19 ab 9.7+1.7 be 39.13+6.35b
N; 3.85+0.16d 25324334 b 1.67+0.18 a 8.9+1.7 cd 44.51+6.25a

sz B AL/ % A%/ (mg kg ™) T A L 1/% SRS R TAHLE/ (mg- kg ™)
N, 68.9 12.27+2.51d 311 22 39.4144.79d
N, 63.0 18.67+3.76 ¢ 37.0 1.7 50.86+7.55 ¢
N, 63.0 23.51+5.49 b 37.0 1.7 62.64+6.78 b
N, 58.4 31.67£5.12 a 41.6 1.4 76.17£8.26 a
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Figure I Mass fractions of ammonium, nitrate and inorganic N in 0—10 cm soil layer
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Figure 2 Soil N mineralization, nitrification and leaching rates in the 0—10 cm soil layer
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