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Abstract: [Objective] With an investigation of different radiation use efficiency models estimating the gross
primary production (GPP) of evergreen needle-leaved forest (ENF) under the influence of drought, this paper is
aimed to provide basis for accurately simulating GPP of ENF in Northern Hemisphere. [Method] MODIS data
and flux site observation data at 8-day scale were used to simulate the GPP of ENF. Firstly, Pearson correlation
coefficient and random forest factor evaluation method were used to analyze the correlation and importance of
each driving factor of GPP while precipitation and potential evapotranspiration (PET) were used to calculate the
dry-wet index to classify the dry-wet type of each site. Secondly, the VPMsw model was constructed by
deleting the moisture parameter in the vegetation photosynthesis model (VPM). Finally, the accuracy of GPP
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estimated from VPM model and VPMsw model were quantitatively compared under different dry and wet types
at each site. [Result] (1) GPP had strong correlation with temperature and PET, but weak correlation with Land
Surface Water Index (LSWI). (2) compared with the VPM model, the accuracy of VPMsw model in fitting GPP
was improved in arid and semi-arid sites, and the root mean square error (RMSE) decreased by 6.5% and
23.4%, respectively. the accuracy of GPP estimates in semi-arid sites was significantly improved by the VPMsw
model. [Conclusion] VPMsw model was more accurate in simulating GPP in arid and semi-arid areas because
LSWI could not well reflect the water content of the ENF in arid and semi-arid areas under the influence of
drought. [Ch, 3 fig. 3 tab. 25 ref.]
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Table 1 Distribution of flux tower sites of evergreen needleleaved forests in Northern Hemisphere

i R4 PR iz 25 S 1B3/m AR iz 25 Hk/m
CA-Man 55°52'47"N 98°28'51"W 259 CZ-BKl1 49°30'08"N 18°32'13"E 875
CA-Obs 53°59'14"N 105°07'04"W 629 DE-Obe 50°47'01"N 13°43'11"E 735
CA-Qfo 49°41'33"N 74°20'32"W 382 DE-Tha 50°57'49"N 13°34'01"E 380
FR-LBr 44°43'02"N 0°46'09"W 61 FI-Hyy 61°50'51"N 24°17'42"E 181
IT-Ren 46°35'13"N 11°26'01"E 1730 FI-Sod 67°21'43"N 26°38'16"E 180
IT-SRo 43°43'40"N 10°17'04"E 6 IT-Lav 45°57"22"N 11°16'53"E 1353
US-Blo 38°53'43"N 120°37'58"W 1315 NL-Loo 52°10'00"N 5°44'37"E 25
US-GBT 41°21'57"N 106°14"23"W 3191 RU-Fyo 56°27'41"N 32°55"20"E 265
CA-TP1 42°39'39"N 80°33'34"W 265 US-GLE 41°21'59"N 106°14'24"W 3197
CA-TP3 42°42"24"N 80°20'54"W 184 US-Me2 44°27'08"N 121°3327"W 1253
CA-TP4 42°42'37"N 80°2127"W 184 US-NR1 40°01'58"N 105°32'47"W 3050
CH-Dav 46°48'55"N 9°5121"E 1639
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Figure 1 Dstribution of land surface water index and daily mean precipitation at different dry and wet stations
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Table 3 Comparison of dry humidity index and model root mean square error
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Figure 2 Comparison of fitting accuracy of GPP between arid and semi-arid sites
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Figure 3  Average daily precipitation and standard deviation in each site
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