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Prediction on the potential planting area of Carya illinoinensis in
China based on MaxEnt model

PAN Langbo, DUAN Wei, HUANG Youjun
(College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] The suitable areas for planting Carya illinoinensis in China at present and in the future
are predicted, which can provide reference for the cultivation of C. illinoinensis. [Method] With the
employment of MaxEnt maximum entropy model and ArcGIS, this study is aimed to make predictions of the
suitable areas for planting C. illinoinensis in China at present and in the future in different climate scenarios
based on distribution data of C. illinoinensis cultivated areas in North America and the global environmental
climate variables so as to provide reference for the introduction and cultivation of C. illinoinensis.
[Result] (1) The area under the curve (AUC) of the training data and the testing data were 0.987 and 0.985,
indicating high accuracy of the prediction results. (2) The jackknife test results and contribution rate results
showed that the annual mean temperature, the mean temperature of the warmest season, the annual precipitation,
the precipitation of the driest month, the mean temperature of the driest season, the mean diurnal range and the
temperature seasonality were the key climatic variables for the growth of C. illinoinensis. (3) It is predicted that

the suitable planting areas of C. illinoinensis in China at present are mainly distributed in Jiangxi, Hunan,
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Hubei, Anhui, Zhejiang, Jiangsu and Henan whereas under a warmer climate scenario in the future, the highly
suitable planting areas of C. illinoinensis in China will increase significantly, and show a tendency of moving
northward to cover a some limited areas in eastern Liaoning and Southern Jilin. [Conclusion] The predictions
made of the suitable planting area of C. illinoinensis in China using MaxEnt model were featured with high
accuracy: currently, the suitable planting areas of C. illinoinensis are mainly distributed in central and eastern
China while in the future, the potential highly suitable planting areas for C. illinoinensis in central and eastern
China will expand inward with the increase of temperature and the potential suitable planting areas tend to
expand northward. [Ch, 3 fig. 3 tab. 36 ref.]

Key words: Carya illinoinensis; MaxEnt model; jackknife test; potential planting area; climate variables
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Table 1 Climate variables

SAFEAR B U kX4 SAFAR ik T
biol FHRR < bioll R HRIR C
bio2 i 2 H < biol2 SRR I mm
bio3 IR biol3 i H K mm
bio4 A FETTHE biol4 T H Bk E mm
bio5 el H e <l 0 biol5 FATPERE K
bio6 % A R ARAIR C biol6 el ¢ 71§ mm
bio7 AR A biol7 TRk E mm
bio8 B3 B R C biol8 el K mm
bio9 AR C biol9 TR B EK R mm
biol0 TR C

LW SRR B AR 22 H AR LA SR AR RED g H i <R S 5t H R A 22

1.3 HESH
13,1 AFETEik RS HE I S A S, XIS R RS A ER . R
WX PG, RIS 152 W58 (B A6 67 A5 B Eclis . SPSS 20.0 #E 1T
Pearson HHICHEAMT . #5 2 AMRAS HE 22 [ AR G 48 X 7> 0.8, D] S 53 7 0 m B R 25 A A1 A A= Ak
AP RS E) 8 NMREAR . AR (biol), BRIEZEH YA (bio2). KIRMZETH: (biod). T
Z RS (0109) . el 2= V-0 (biol0). 4FFE/K R (biol2). & H FE/K i (biold) Flfe M 2= % /K it
(biol8), T HEZRYHT
132 ARZRELERFN FEIGTENR 8 N M5AS i FRE 25531 85 25 21 MaxEnt 3.4.1 F 4+,
MABARE R 25%, INHBHREHR 75%, it filE e e Logistic, HAWSEEIA

MaxEnt F5 B FU ) 45 2R T 321808 TARRHE T ZE (ROC), ROC Ik T AY AR (AUC) BUE A (0, 1],
AUC BRI 1, BTN A 25 R B, 4 AUC>0.9 I, Rl 45 RARKE Y,
133 # o hsiE A F 8RS YR MaxEnt BRI 9255, I ArcGIS 10.4.1 B4l E BT RE
B SE LR b A AR SO R . PR ArcGIS BT 7020 AE, # MaxEnt A58 F50 (1) 72 L AZ Bk AE
H [ SEBR AR DX 0 3 A AR AT IS A R 4y AR IS AR (P), R TN B S LA B IE A X R 4y
32 JREA X (P<<0.08). VETEARIEAIX (0.08<<P<<0.25). WE{EEELEX (P>0.25),

2 RGN
21 BUNASEIRS 4347

M AS BE ROC 2k (] 1) AT 1. Y25 4E 1 AUC H 0.987, K3e4E AUC K 0985, AUC KT
0.9, FrR TN LE FARF b, MERIXT A LAk A X T A e A AR 5

22 ST RS RS & AR Rk o
M2 TR AT 8 AR T, FoR ngf

R 4 1S i e+ H K A (biol4), B 22 A

= e . . 0.6

EI( (bio2). JIEF TRl (biol0) IR T Wb &
; ) T I B 04 TRk R K 0.4

(b104), %*/\ﬂ@(}ijjj 832%0 Biq:ﬂ Iz%ﬂ(%mﬂfﬁkz ~ L}”éﬁ:?ﬁ (AUC ?‘\j 0987)
K, ik 33.8%, FMHET HBEK R S IRk 02 I 4 (AUC 2 0.985)
IR EE AR R HOR BRI E A B, 5T — B (AUC %5 0.500)
21.8%. H MR 2R IR AR A 2 M T kR AR 0 02 04 06 08 10
T 10%. 43500 17.3% F1 10.4%. T4 4 45 525 bt Rt
ﬁ%ﬁ%;é\%ﬂjﬂ 16.8%. B 1 MaxEnt fam 2 X a9 AUC 18

Figure | Forecast results of the AUC value by MaxEnt model
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Table 2 Contribution of climate variables
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Figure 2 Jackknife test to examine training gain result of

climate variables
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Figure 3 Response curves of existence probability of C. illinoinensis to main climate variables



80 WroIL R R K A R 20224E2 H 20 H

2 2 P-4 (bio10) KT 23.8 °C, IRAIZETIE (biod) KT 687 I, AH T i I A 1K,
25 YHEAETER LEREFENESEERKRE

MATRMERIE T, 50 I AZ S A= 430 DX BV TE AR R 891 936 km?,  JH: rf % 7 w5y i A= X T AR
55142 km’, VFERIEZE XTE AR Ry 836 794 km® KR 434G A DX T R AR DRI b X, A rh
TEWARG . TOPG . LB WiVTAYALERANTE S . AR PEALER . WAL ARER . W R RS IR AT IR TR P X AT
ARAGEB . ) VEARILES . LR mE R 2 B VS D R AR A DX WA RS AR ARV L TR P
WA 2R R AN AL A D R AEAE
26 ARASEEZEAEETERLUZREPEEEMHEXSE

ANFVAERAS R RRHEB S ST, WS LA rb ] A 08 A o A DX T AU G = 24 i3 A XA K
FERIBEIN, W RE A X A IR &2, B E7EA g 5 A I M (£ 3).

x3 FRESEBETHEELZMAEDENSEXER

Table 3  Suitable area of C. illinoinensis in China under different climate change scenarios
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