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Research progress in plant somatic embryogenesis and its molecular
regulation mechanism

WANG Shiyi, HUANG Yizi, LI Zhouyang, HUANG Huahong, LIN Erpei
(State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: Each plant cell harboring all the genetic information of the species has the genetic potential to
develop into a whole plant, which is termed plant cell totipotency. Somatic embryogenesis is a form of induced
plant cell totipotency, by means of which embryos develop from somatic or vegetative cells in the absence of
fertilization. Somatic embryogenesis, an increasingly important tool of plant biotechnology, has been widely
applied in germplasm reservation, seedling propagation, molecular breeding and basic research of many plants
and it has been implied in previous studies on molecular genetics that somatic embryogenesis is subject to the
regulation by a complex network composed of transcription factors, hormone signaling pathways and epigenetic
modifications. Therefore, this review, with a summary of the development routes of plant somatic
embryogenesis, is aimed to give a comprehensice overview of the research progress achieved in the functions of
key genes and epigenetic modification in the process of somatic embryogenesis along with an introduction to
the applications of several key genes in genetic engineering. The development of new technologies is conducive
to better and more profound insigts into the dynamic changes of of metabolic components, transcriptional

regulation, phytohormone signal transduction and epigenetic modification during plant somatic embryogenesis,
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which will promote the understanding of the underlying molecular mechanism of somatic embryogenesis.
Besides, by using those key genes of plant somatic embryogenesis, it is possible to development new methods
and technologies to improve the efficiency of somatic embryogenesis induction and genetic transformation. [Ch,
81 ref.]

Key words: somatic embryogenesis; transcription factor; regulatory mechanism; epigenetic modification

YRR G (RN KA 48 O bR dn A St AR G, 2 RE FIRE B IIBRE
FIE AR R, SRR G FIRAE B IR Z A0 — RIS se B AR Y B2 T B, W2 A 40 i 4 e
B —FEE . A EIRTESAE N Daucus carota W R BRI K A MG VIR, NNTHE K S AS [RIAR ) (19 20 2L 55
Fr . PN EIE RS L BRAE R B SRR B AR 0 A B RR LS B sl S TR R A R LA AR X
M R E v . AT EE MRS R SIS, KIRR AT SR TEE WA R AR TH, 7ER 55 AR
17 REAET A . NTRF . 2 F i TR E RO Eal a5 5 Ta A & T 12 R H

TR A — N R KR A3 R R SR (55 A A B R A5 M 28 1) i . T4k i F
FARY]: — SO S N TR AR IR A AR ) 8 S, HTEAE KRR/ MR MR E SR T A
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SER R 508, LA R Ja SR 58 R AR I & FR LR 2 i 4

1 IR R E W R AE

PR AR R AR A 2, DA 1) JUR P 200 2 A AR R R AR, R P e s i — 20 .
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(RS 5 Wl = I € 5 U8 VIS A BT i Yt B Y R o 1 A o N R NG R = 0 (R A DR
I RE S AN, R AT DR I B A, R AR AR, R, sl
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ZEHIEN . CIRIRELE SR, REE AR TR T ZER SRR A 5 o1
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2.1 Somatic Embryogenesis Receptor Kinase (SERK)

SERK RIS AR FEHH 2 S 1A 20 i ) JU 1 200 2 A8 (s R v gl 2 BAY . SCHMIDT 2519 A& R
WGV R R IR A I R o3 B T 56 1A SERK JEH (R DeSERK),  H: HU 7 AP 4 it oy ik H R Rk
BRI E B RIBROE W], eI 40 A B ow 5 AR rh Y AR SRE o Bl S 7E1F 2 SLAb R i 5 Pl
Y SE B T ANIE Y SERK TRIJREEA , W Cocos nucifera (CnSERK) . ##% Citrus reticulata (CrSERK1), 5
¥ Dactylis glomerata (DgSERK) . #<%E H 1§ Medicago truncatula (MtSERK). K& Oryza sativa (OsSERK) .
INAZ Triticum aestivum (TaSERK) F1% % Vitis vinifera (VWSERK) 21", TEL G I¥ Arabidopsis thaliana i3
HFRIA SERK SEIH, RefH R4 I AG & A= A BE T35 N 3~4 %, R E R AL s IR e &A1Y, dE—
A5 R 4 SERK TEANME R A i F80F, AT LGB RS0 F15 54 T HE A LRR X 5 E A4
G, PSS GRS AN BB IS5 GUB O (A= R B BE 5 )™ I EAES AT DARBIAS [R] 5
J P Y e o T A B R AR IR & A S L PR ) 2R3k (140 Leafy Cotyledon Fl Baby Boom), #1175 541
Ji sl 20 2R ) i e A B AR TS IR, SERK R RE SR ARV 28 A 3o A r (2 5 A 240 e ) JU P 4 L 2 722 1) DG B
2.2 Leafy Cotyledon (LEC)

LEC J& T nuclear factor Y(NF-Y) % 5% K+ 5 15, 02 W JXF Z DI RERY B3 4548 3l 8 11 K R 1 it
B, U LEC1, LEC2 Fl FUSCA3(FUS3) %5 LEC 3 R #R 9 I\ Ay 2 V8 5 A8 9 IR iR & A= A % 5% TR 7 1200,
LEC 3EH (LEC1 F1 LEC2) Fe e e T A B, lec RABKREGMMBEBTAIER . SRR &
F . G RE A SR, R LEC JEP TA4ERpE Y IR e Fe v BAA 2 Ay D RER =, 5 H A
RIEW G K FReE BoREIAR, LEC BPTE R IR IR K A B Be S5 010 G BB B &
HEEN. ERGET RN, LEC BN e MR iarz, #HF Rt XHERHAN &A= Fifd i ek
TR e B B SR AR R AR By, LEC BRI RIR SR e B Al ¢, adshk
) o )RR SRR K M 1 3R A5 25

WF9E R : LEC2 BRI Rk SR 0 KB MWIRE, RO Agun =44, HIkdE—
oA R RIREY ) X KB LEC2 R R nT REFR AL T SRR K A T e i 45, (EAAE PRI 2 A 1935 = o B
EE AR PO, T LECT e R % DA ) h 1) S 67 R385 175 S AR 4 ML AR S5 R DR )7, I 742
R A B A i R SR 22 R R IABK . X R W] LEC1 R ATRE S5 TR s bFIR E , 1
AR YT, FUS3 FI LEC2 A7 43% (IR, 148 VP1/ABI3-like B3 Kk sk K 1, FUS3 %
RIAE T o3 AR A U I RE S 3Ras AT AR 2 56 R 0 T o 3 A 2L 807 A AR RO
2.3 Baby Boom(BBM)

BBM J& AP2/ERF %53 [N T 5 AINTEGUMENTA-LIKE(AIL) HEACKHI O o )& e A H i B3
3¢ Brassica napus & WEAAERE S PATIRIRIGES, A BLH) 1 ANTERRIR & A= P85 3L (BnBBM), 18 H ¥
AU A R I T S 57 F IR BT TS SRR A & A, ISR A FEAR IR & AR o B rh BB A 1 4t i oy 2L FE
BRAEPY, [R5 R BBM BN R A Y A0 M A Re vk ) G R R TR K -, 7R TR FMNEAE P A= 4 R 5 5] B
o3 4G 0 W RE IS TR AN IR O TE B He N BnBBM 1A 3¢ 325 ] DUAE O e Jite A 9 A= K I8 1 570 1)
M T E SR T A 0 B AT AR R AR R BnBBM SRR nTEHE T A% Populus tomentosa
A5 L2 AR RS T AE T R ME A 3R AL Capsicum annuum H 383635 BnBBM KK B A 35050 IR
TR A B TP A R AL R ) 1 () 3 BBM RE R i kil vl LU S HABSS A A B4, A dhandss
A, ANEZFFRBITE R, B RSP O TG E Y AR ) 1 A5 e A5 Rt 7,

2.4 Wuschel (WUS)

WUS F:K 2t 1 ARG s B, BERA 1A BEOR ST 09 [R5 & 458 ORI ORI C R 3 X (B0 5%

3IANTIfEMELE B 1 ARSI . 1> WUS-box Fil 1 4~ EAR-like JTCF)PY, WUS S [ 1 45 B 4E
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R EEA B, BN EYERAE (TR I X) Bl B8 X W FauMarh, ek
DTG 1A 4R T CLAVATA3(CVL3) N5 sk, CLV3 % sh Bl AN S CLv1 454, Jad ok 0 i
WUS By 5%, X B WUS-CLV IR R G 4e+F 7 1 40 I 0 Foe M T o3 AR 4 8Ly R &/ 09 Ak,
WUS F A R SR ARV e A 25 AR el R o BT b 7 (50401

5 LEC2 2k, wuUS HH S AERKZERmN, ARKFRRMEE | DHEE FRAL R4 25 AR 1
F5RaR, XA AR Z wus R, KRR 5 E T . fiMil Gossypium
hirsutum FIHRINNE Coffea canephora “EANRIREPIARI & AR, WUS [RIURSEF B FEA AR 200 B LR,
WUS F:DIAEL R IF A 3 220K AT DL SRR & A DL M ZE AR IS 28 B & AR LRI IT WUS HE IR 28 5 M
TEEAES, EroRinnErh SRR, REMEIA AR A, R R R IR (A IR AR T
7 i b A H DU AT 2o S B AR R s R S e R AR B IR E A 2 AU S AR
25 {KBER A WF REER LS

PAEA, KA Y 0 T G e LT D RN PR A MY 3 BH « AR IR & A A7 A6 2 44 0 i SRV 92 I 245
G5 FmiE LA R RIER), AR T Z BAEER SR 2E . (cross-talk) THFEP,

BRAYBROOK %57 DLyt %35 LEC2 (AR IT S Ei A kL, R RS R 0 i e T LEC2 (1 FE
B, HhadEk K Z R AGAMOUS-LIKE 15(AGL15) #5H ¥, LEC2 REWSBLEE K Z4Y46 ik
Ry RS TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) LA K YUCCA2 1 YUCCA4
(YUC) B35, i LEC2 1 63k ] IAME AR L 2,4- AR LR (2,4-D) SRR BAR M A= K % [ fnins)
LR (IAA) 828 SR (NAA)] TEIRIRE S HER™, [z, TEIEH M 2,4-D && T, LEC2 M 5Aiid
TR TARER KA, EAES = A @ H LM EAEARIRES ) LEC2 5 AGL15 [l F£ 75 5% 55 28 B 45 AF
I, B LEC2 BEWS 1V AGL1S (3Rik, AGLISWATLL B LEC2 (31K, AGL1S Wil & F ik SR iR g
PR IERIE B, BARSESFFI A RNIEIR AL, XKW AGL1S FUZRN5E T IR 20 IR IR & A
BE W), (HAFEENSE, LEC2 Fl AGL15 ¥IRE#% INDOLE-3-ACETIC ACID INDUCIBLE 30 (IAA30) {3
K, N —F AR A Aux/TAA FEA R, H AGL1S R IRIR & AEAE iaa30 F878 (A ip B 5 52 21 )
55090, X W7~ LEC2 Fl AGL15 W] g3t [l i 2 K Rk R i kIR & 2, R B AT AGL1S Fl 14430 7
LEC2 W53 WA IR A o i AN B A

A Y R R UINE , 4R 2,4-D M BBM i SRR P BB S R T BBM ) R R LN, KB
BBM e 454 LAFL (LEC1-ABI3-FUS3-LEC2) Fl AGL15 R i 3 3 1 X 42, AE lecl FI fus3 SR A H,
BBM AREFEHANRI LA, TIAE lec2 Fl agll5 S8R, BBM W5 FHIRIRRA s, i BBM JR¥:E(% LAFL/
AGL15 35 J& BBM i@ 2 A Pt A2, [ sk BBM Rk 32 3 LAFL B A R . BBM 3%
IR EETE lafl SR RPN TR BRAK, ULRH LAFL % ST 1E M 9837 BBM (R ikP, XSk LM . BBM
LAFL SRR SR BREE, RARKRG T @SN —B57 .

WOUND INDUCED DEDIFFERENTIATION1(WIND1) J2: AP2/ERF %% 5% [ 750G i) o — i bt . Had 3@
IKLRES SRR & A=Y, WIND1 KRR LR WIND2~4 t 45 1135 S, A4 45405 5 T 38k A 405 40 4 1
5, 5 BBM/LAFL 2 A ANIE, WUS A1 WOUND INDUCED DEDIFFERENTIATION1 (WIND1) % [ 18
it SRS R RAT T E R R R A . WUS B A B ARR FEPRDRIE R ZE A AU AR, 1R
S AR ZEE N A GO Y, T WINDI i B AU ARR FE A AU TE B, SRR R AN
IYRZ AR ETETT RN . wUS Il WIND1 5 LEC ARMIEAE N . HE SIS WIND] 5 LEC2, %
5 & WIND1 Rl LEC2 TEAMA R T RE1SE T3 2 W It @ s 41 2159 WIND1 W3 e ik 88 T St rp
PR M, S SR XS LEC2 R T N5 B AP, [z, wUS #3385 S IHA S
PIRIR S LECT W RIAKF, X R wUS Ml T LEC 2", 25 LTk, fEAHY IR & A i 72
t, LEC. BBM 1 WUS %5 8 E I i AR T 1 A5 2% B Sk el I 285

3 JRAR R R LR AR

FUEAL IR IR A A B OGN 3R . 4R, DNA WAL . 3 A & i/ H R 2
B FOML I 1 LT 24 C A UE S T LASA AR ) AR 5 A ) s A0,
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3.1 DNA BHE{L

DNA W EAL 295 R A= W2 R i B B R s AR LT B 2 R U0 R DR 2 7 5 R A 4 B R 3R A R P 1Y
KHEEHZRPT, DNA HEAb XA B BAEE/EM . @, JEMrEai g 3L 4 B oKF 3 s,
JAAE 20 21 2 PR 21 LA KT AR PO, 76 FIAR Quercus alba 1, PRIRIE S0 3L 41 DNA 2% & H
SAb, HEEEMRIGART, WEAACEEEE S, AT PRI ME A RS S0, AR 20 DNA H
AR, TREE AR 2, R B T =, ZEU R T iR & 8. DNA HI AL S 4k
Fi AR & A R R b T ) I SE RAE IR 542 Picea abies LA K H11Y,

DNA F AL Al ml i 2o 5 R e SE R A TOER . M2 & 2 i R #E 2R . W LEC1 B2 3
T XS AR & AR T I 2w & AR AR SE Ak, B S iR B B8 35 A K v B SR AR K3 s R
RNA F:[1] ) DNA HILALXT LECT 3£ ()5 8l F X R 78 W JR b & F R s, 320 LECT 3£ 1%
2R ST B H AL IR, eAk, 3 K B SEAL IR S-azacitidine 14 1 AT H0f sk BH BT ER 25 D R
TR R AN IR K A=, T 25 ) S-aza-2' B AR R LA 40 ) AL RS I 1 04 T R R U R AR
A, IR H BRI TR K A A R S N STM G s . XSRS R . JEK 41 DNA B H 34k K
FRRE SE R X 3 DNA F AR M S5 AR R AE AT IR R .

32 AZEAREN

ZH R A SRS AR 1 SRR RS B ST AR o 4R 1 H SR AR R AR P E AT i A is b G B
HOEAESI Y AR THESE, BE5E & B Polycomb 1l il & & & 2 (PRC2) i 53 #4741 8 1 H3K27me3 45
ic, BT et iras i e, s T, PRC2 3ER CURLY LEAF (CLF) Fll SWINGER (SWN) B
VERNALIZATION 2 (VRN2) | EMBRYONIC FLOWER 2 (EMF2) W ZRASATE 250 IR i, Fkss
5 | 7 ] 4 ) A VR e A R S S AR Y CLF S 3 ) IR i v i) R BE IR, A4S AGL15. FUS3. ABI3,
AIL5 F1 AIL6/PLT3 % 5 R MR % A A 155 5 I 71, IKEUCHI 267 2 B . PRC2 AR IR AR B0 ik 4
FHEMEIPIRES, RO ST RTCASUaniA , JF H R 26l gl U8 s e, Hg o i & T
PRC2 SEH 5848 R EULMESL N WIND3 Fl LEC2 W)k Ml g i, 575 AR BANMIME 1k o X Setf
FEVLHT: PRC2 38 3o 20 25 11 Y AR 00 ) R OG5 DR 199 R 5 S A1 4 ML A A sk B2, S 22 ) 5 | R 4 L ) e
ok, SRR KA
33 AEREZHEK

2R 1 H3 Hl Ha B S eI XS SE PR 3Rk A IE ) iR ME R, 418 1 S IR AR KT R 32 2 4 288
LGRS (HATs) FIZH 25 25 C B AL (HDACs) ™A% fs il . 418 2 2 et e SRR & A 25 DA
KB F LB . TANAKA SEVT 24T 4 8 (1 28 Wb e IR IR A sl bl VR FH A SE 1 ANE
o ABATITIE 20T . HDAC S5 M 9 8 2 A(TSA) BB IR 7+ Rh T B AW & 28 K A5, AR
Fricd 5 LECL, FUS3 il ABIB3 3635 L, SEURIRARE T M m i A K it 0 . BRI % fE 2 4
HDACs-hda6/hdal9 SRR A DSR2, Hiz W R AR REAE I e i b= AR g iy Y )5 252
IR HE— D488 13X 2 4~ HDACs Ml IR B R F ik ipLil . Horh, HDA19 &s4¢SsEhgs & vaL2™,
HDAG6 WFE 54454 VALITY, VALL fl VAL2 X 2 555 G {K (mediator complex) 1441 il 14: 37 3
CDKS8 #54, #FMiFHSFiX 2 4~ HDACs NI A& M 5 st /v 2 G R3] LAFL JER ) R3K7,

HE A L L BACIE IR IR & A (0 VR 7E AR Y i R IR 75 T 92 56 rp B3R A THESE . B =2
Picea asperata KR %: TSA A PRG S AEFF AR EPIRZS , A SFEAL AT, B/ T, TSA FITHR
B (53 —Ff HDACs I 751) 5940 BE 0] DLBG AR PE @ 05 i 75 S R M ZE bR, (B TSA A 3SR, T
R 6T AN [) 35 R R0 sk SR A 22 7 7L TS A A B ] I 8 2 AUt i A H B 780 3 2 /N T B AR R R
KA, RUTAGAESEAA 8 2 Z WAk T B3k Wm0 ORI & A R R -0 0, DAii e shik ik
KAERMFEFUY, 5 H3K27me3 Z4fBl, 418 A LBk /KF- A1 HDACs 1936 e B 375 5 00 (R F AR & A rp
SR AARARTTTE WS R TR R R R R A i R B B, AR OBHMEEHI AT RES S TR AY B Gn e .
XUEHFSE A . FERY 4 B (25 S AL R TR P AR & A PRSP AR o

4 K Ak R AE (AR R A 3 A AL o By R
FUT, M A8 P A R, 0 R AL M 5 A M L 42 7 e
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FabR. BAR, A RIFERESESMIE, K. SURIT . W Populus 55 /DR ) 5t
HAACTRAT T 1), ABAPAAAE BE R AR ™ o . AR AR ) R, Bl AR R A ML R TR A, —
AP SR AR VR A A 42 S DR e 2 W P T 8 e R ) 35 A T AR 2 R 35370,

BBM Fll WUS J& 2 A~ d5i P APt AL e AL BRI e AL SR SE X . il an, AR Capsicum frutescens
BHARZEFRMAEFMENGES, HA 2 A AXE LU w4 A1 8L . HEIDMANN 2505 #5938 % 81 .
TESH AU BEET 23K BnBBM JEPK W] LA s 3 b5 S 4 M A2k, I 2R KEE vl k& U MR AR AR, DA R
PZIE R AT DL MERE AL R T & — P 3 st G AL R A R R o FE Bk, ZmBBM 1 ZmwuUS2 Fk
RIS AR AR, R RE @ 0 0 o) 5 42 0t . BT 2 XERE A 09 oK 58 & rh 24 B I AR ™,
WAk, ZmBBM F ZmWUS2 By 3L A8 T LUFE 51 3% Sorghum bicolor, H 1 Saccharum officinarum F17K A5
R E A ALRCR, B, BBM I WUS N Ry 2t B AR Rk B TR v ELAG i 08 A A1 A (R G B
FEHU AERCT A T, MAHER 25810 wuUs2 Filipe 8% wUS2 i STM AL IREE Nicotiana tabacum
WA, fEME A BB T SRR S, b T BB AR R A HZOR R, s bt
PDS JER AT 17 B i, RS TR G0 R Ao BT RRR RS AU A AR, MAHER S50V 38 8 1 4
W WUS2 il ipt 88 WUS2 Al STM 3 R AKFT BAE 17 AL BEE T 1 2R BRI, I HA ] DUSCEIN PDS 2
MRS JE A . R IEAETE i Solanum lycopersicum . 75 3RS T IR, IEH T wUS 455
PRI PE R A 4 25 DT iR 1 I T

5 RE5k%E

IR A R R B A e Bt — M EE X, — BRAEY AR PR X TR IR & R /Y
BT, MBI R & A5 I N S AL, B Z R T S8 MERIE TR 22 5IRIR A
AEREEIN I IE i SRS EE N A0 2R R R B SO IR K AR, R AT W S (AR e A )3 5 A
FEIN PR R, WA AR AR T B B R LA, AR E R A A LA AR — ELAE A B TR AR

T

MR TLE ) L A RS R BOR B BE, e — P OF R R R A 2 R R ) SR 2 I
MR T A LR SR O T AR EAILIE . IRARGEIRIR R A i P PR 5 5 S RN R 2 0], LK
PEIE B S R R A, IRATIARIR A LR R 20 T HILH AR S a A, K o B AR i A 1) A e LR S (1
Z RN . B L BT A AR PR P A B DR BIESE, HRMB LB ] 2 SRR A,
TERIR S 5 R v A e 4 R A 57, DNA FRRER R 8 PR AN ] DX R RE Ak ey 2 S A ) (A I K A v
FIR L PR SR A T T B B 538 T TR AT SR A T 2R WLt A2 A6 1 AR A A i A

HEAh, A S ] ) 28 S AL e (LB ILES ok, 1E 8 2 iRy S BRI R A, B4R
L 0-PFAE RE T FIIB AL T AL OS8R, AT DAy B 20 A 56 B DR i 55 i AN A ) 338 e 48 1 B I A ik
L B IRAE R A e B E T E G RS, eI B PR 00 AT R RAT o Y
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