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Selection and validation of reference genes for anthocyanin
biosynthesis in Liriope spicata fruits
GAN Sichen, SHI Yue, LIANG Lijun

(College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] The objective is to screen the best reference genes (RGs) for the study of anthocyanin
biosynthesis in Liriope spicata fruits. [Method] Based on the transcriptome sequence data (unpublished), 15
candidate RGs were selected according to the coefficient of variation and fold change value of gene expression.
The expression levels of candidate RGs were determined by RT-qPCR in L. spicata young and mature fruits.
The expression stability of these genes was evaluated using software packages and algorithms including AC,,
geNorm, NormFinder and Bestkeeper. Finally, 10 target genes (C4H, CHS-1, CHS-2, MT, UFGT-1,
UFGT-2, MYB-1, MYB-2, MYB-3, bHLH) from 6 gene families (C4H, CHS, MT, UFGT, MYB, and bHLH)
were screened to verify the selected reference gene combinations. [Result] There was difference in the ranking
of candidate RGs obtained by the 4 methods, so the geometric mean of the 4 methods was used as the
comprehensive ranking. Based on geNorm, there were 4 recommended optimal internal parameters, namely
CNNM, GPR107, EFl-a and G6PD-2, which were the most stable, while PDP was the most unstable. The

standardization verification of the expression levels of 10 target genes showed that there was no significant
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difference between CNNM and GPR107 as RGs combination and 4 genes as RGs combination, and the
correlation coefficient reached 0.999 9. It was more feasible to select the dual RGs combination than 4 RGs
combination, while unsuitable RGs (PDP) would cause serious deviation to RT-qPCR results. [Conclusion] The
combination of CNNM and GPR107 is the best reference gene for anthocyanin biosynthesis in L. spicata fruit.
[Ch, 6 fig. 5 tab. 39 ref.]
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I#4& Liriope spicata I H & FF Liliaceae Z24F A= EAAY), TEFIMERAL b 280 55 T M sk 21 [H
Ab, HEVHRER THE, BRI ARG BGEAN R FOWIEH . ILEZ LR Liriope tHY) R A 8 F, o E I
6 Fl, Hr L 3 ReA R, (HINEL Y Az, BRITE X mi s X Ah, &4 24 4y
i, HHIRI A 52 N ARREE S IR R R AR, B R W B A AR 122 A i SR S 3R K ol
RER, 9 AHRIRWURI T KA RN &, HHAEER K Z 8 T8 BJ7, 5T, BAR
R ARB O . ERT, 01l 4 it FE v 5 ) BT R R AR R TR it R, BAETE R G R RTE
YT RIRSFIY, B LG B R I e FE Y A SR A B BT R A OGS, I R Wi i B A
FRBHE ST R R -2, RMEREAEOR ICHILHC, o, B35 R AR RIE 25 5 71
P, P LU MYB B 75 bHLH §57 H 18 0 i UL

TR KRR E T ik e 2, Hh SEm 98O i PCR(RT-qPCR) Hi T EEERf . AR H.
i, BTN TR RIS . (BHAR R 2 RNA i . SO sRBeR . 1Rk . i
R L SRR ER R AT, S5 1A AR E R NS IE I (reference genes, RGs) R
AL H 0B R AR IR0, TEAE# g, W LIS (actin, ACT!"™" . W (histone)'™ .
FISTRIE (protein phosphatase, PP2A)" . HiHEE-3-BEHR- I Sl (glyceraldehyde-3-phosphate dehydrogenase,
GAPDH)'? | 1z R45E T (ubiquitin conjugating enzyme, UBC)!'™ ) DL K 18S #ibl{A RNA(18S ribosomal RNA,
18509 A AL I BRI (U3 WL AP SR S TR, LA LA 5 2
R RIE . ST, APPSR T I A ARG S a8, A1l 22 2R S0 R B e e RaB i N S 2 R 1 T i
58, MR RO EE AR LI RT-qPCR 23 M i ER M SR AR 3
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1.1

FEWTTTAMI A TR, SR KR IREARR], AR KRG R AF . RBEESFILEL, FEPLA)
KA 15~20 PRILAE AR —FAEEE R Loy N Res, BTN TA K, REILEL
R (2020 4F 9 H) St (2020 4 11 H) 2 ASEHIRES, SRESMAEZE TP IR J5 57 BIFE T80 °C vKAf
B WE 3 RAEYFESR,
1.2 2 RNA #2EUK ¢cDNA &5

i HIRAR B AT AL RNA 2GR & CRARA I RHE A PR W) RSB RE A rh 2 BUEL RNA L SR T
SR 1% WBR AR R FE IR I RNA B 5886 PE . L RNA R 40 B 5 ¢ >R H NanoDrop ONE f3{ i
R R SR (MR B I 52 A (Therm, SEED) M. B RNA FEARREEE Y R T 4x10° ng- L' DL E, & RNA 4
JE [D(260)/D(280)] 4 1.9~2.1, cDNA () 4 Ji fdi Ji| PrimerScript™ RT Master Mix cDNA (Perfect Real
Time) IR &, FrAFEAR RNA A= 3x107° ng L' F B2 [F]— ik %, cDNA #F-20 C
UKFEORAT
1.3 RENSEERFER RT-qRCR

FEF B ARAT 0 110 22 27 s A B B ot BB S 3 A E RN 45 (KEGG) {88, ik T 2 4%l i 1 5k
REN NS IR S H T, WS 510 E2 LRI Mo A i 3L (SLC36 %), S5 P L
(PP2C. MGL, PDP, G6PD %), Z 555 5 2WMH (4UX, GPR107, CNNM %), 541t
R R (CFL 5%), Z 5Pz iR (Trx 55), 2556 E AR A (UGT. PP24. EF1-a 5%)
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1648 4, SHFTAXS NS FE Tk BUEREEE OE ", DURE TS0 38 4% sk g 1 0 e SFhse )
Bt (FPKM) T 5 B (IR 38 A ME LARE I ) . 48 5 R0 <<0.1, ZRUf550<<0.2 Rfiik 254, 153007
15 MEE NS EER (G5 1),

F1 LEZ15MRENNSER

Table 1 15 candidate reference genes of L. spicata

LR SRR ol | P LR LR
E G 5 S G 157
SLC36 solute carrier family 36 0.003  0.001 CFL cofilin 0.061  0.178
PP2C protein phosphatase 2C 0.007  0.019 UGT UDP-glucose: glycoprotein glucosyltransferase 0.064  0.184
Trx-1 thioredoxin 0.037  0.107 || PP24 protein phosphatase 2A 0.064  0.185
MGL monoacylglycerol Lipase 0.043  0.123 EFl-a elongation factor 1-alpha 0.067  0.193
AUX auxin influx carrier 0.050  0.144 G6PD-1 glucose-6-phosphate dehydrogenase 0.068  0.197
GPR107 G protein-coupled receptor 107 0.056  0.161 G6PD-2 glucose-6-phosphate dehydrogenase 0.045  0.130
PDP pyruvate dehydrogenase phosphatase 0.058  0.169 Trx-2 thioredoxin 1 0.065  0.186

CNNM cation transport mediators 0.061  0.177

MR 5 ARG R R S5 B, R primer 5 BT 5149, IS BTN A BEAE Y £ AR A FRA A
H W (% 2). Al TB Green Y4k}l (Takara) iz i, #AFX 20 pL, F#{# F LightCycler® 480 1T % 5¢ ¢ iE #
PCR X (B'X, Fit) #E17T RT-qPCR, SUWFERF: 95 °C FiZ8ME 5 min; 95 °C ﬁ% 10 s; 60 C @J@JEF 30,

40 MBI, TLHRE 3 AV EE . PR (cDNA B ER ]y 5710 5720 570 574 SO IHRA
AN E=[10(-1/K)~11x100%, M. E NP8, KOARE. 15 Mrik V\]’%ﬁlé’ﬁfi aﬁl%jﬂ 91.7%~
108.0%(% 2).

®2 15 MRENSERS| Y5 FIF0Y I8 FHHE
Table 2 Primer sequences and amplicon characteristics of 15 candidate reference genes
N IEmGI#IFFI(5—3") 61519751 (5'—3") PRI EEbp  HSCRI% HRAREL
SLC36 GTAAGTTTCGCCGAGTGCTT ACTGCAGTAGCAGACCAGTT 148 91.7 0.982
PP2C TGGGCCATGATGTTCCAGAT AGTACACGCAGTCTTCACCT 77 94.8 0.999
Trx-1 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 72 102.0 0.999
MGL AATGCCTTCACTGGAACAGC GCCGCCAAGTGAGTAAACAA 138 101.0 0.994
AUX TGCAGAGAAACCACCCTTCT CCGAATCCAAATCCGACCAC 99 91.7 0.949
GPR107 ACAGGTGATTGCGAACATCG CTTCGACGTCTCCTTCAACG 166 105.0 0.906
PDP GACGGAGGTCGGTTGGATTT CTGCACATGCATCATCACGA 124 96.2 0.976
CNNM GCTGCACTAACTCCAGCTTC GGCACAACTGTGGTCAACAT 86 96.8 0.999
CFL CGAGGAGAACTGCCAGAAGA GTTGGATCGGTCGCTTGTAG 153 107.0 0.992
UGT TGGAAGCATCCTCACTTGACT TGTCTTCAAATTAGGGTTAGCGA &3 93.5 0.994
PP24 GAGTCGGAGAGGTCGAAGAG GCGGAGCAATTCCTACCATC 121 99.2 0.975
EFl-a CAAGCGTCCCACTGACAAG CCAGGCTTGAGGATACCAGT 111 101.0 0.998
G6PD-1 GATGCAACAGGCCAGAAGAG AGTGCAAACAGTGCAGGAAA 104 97.9 0.996
G6PD-2 ATAACGTTGCCCTCTCCACA ATCCAACTGCAATCCAAGCC 107 108.0 0.999
Trx-2 GTGGTGCACCGTCAGTAAAC CGCTGTGGTTGATGTCTCTG 113 96.0 0.992
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Table 3 Primer sequences and amplicon characteristics of 10 target genes
SRR 44 EMFIFF(5—3") S5 IHIFE(5'—3) PR Ep  PIERER MR

C4H TCTTTGATCACGGCTTGCAG ATGAGATCGACACCGTCCTC 88 109.0 0.992
CHS-1 TGCATTGCACCAGTAGTAGC GCCCTCCTGATCTCCTCAAC 122 104.0 0.995
CHS-2 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 82 91.7 0.997
MT CCACCGAGAGCAAGAACAAC GGGTACACACTGGTCTCCAA 112 96.2 0.999
UFGT-1 AGCAAGGTGTTGAAGGAGGA AAATTCCGAACCGAGCTTCC 110 91.7 0.935
UFGT-2 CGACGGATCCCATTCGACTA CGCCGCTCCTCCTATTAAC 57 929 0.996
MYB-1 GCAAGATCAGGTCCTCCTCA CAAAGTACGTGGCGAAGGAG 162 107.0 0.975
MYB-2 ATGGGAAGATGGTGGCCTTT GAAGGGTGCACAGCTTCAG 70 91.7 0.986
MYB-3 CGAGGAGAACTGCCAGAAGA GGTGCTTGTTGAGAGAGCTG 172 105.0 0.996
bHLH TGCTTAGCAATGGCAACAGG GGCTGCTGACCAGAAGATTG 123 101.0 0.998

Ja A SPSS 19.0 5 Graphpad Prism 8.0 434 M AE ] .
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Figure 2 Agarose gel electrophoresis of the PCR products of the fifteen reference genes
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Figure 3 C, values of the 15 candidate reference genes

IKTERE . ARMXS IR C BTN SRR RUEMERA L, T 5 A 5.
22 ASEEMBRESEST
FIFH AC, . geNorm, NormFider Il BestKeeperXf 15 Mt N2 L A & TEEI T 00T (G 4).
ACHEJETEIR IR CAHMEERT b, THAR AR T A AR 5 M B 1 C 2 25, I HAR I
x4 AFFEEM 15 MRZENSEERIEINIZEE
Table 4 Expression stability of 15 candidate reference genes evaluated by 4 methods
AC, geNrom NormFinder Beatkeeper
e
brifi2s TR E FEHAREE P22 5 REL FHRZREL

SLC36 2.632 0.854 0.173 0.569 2.523 0.671
PP2C 2.321 0.927 0.416 0.828 3.070 0.824
Trx-1 2.663 1.130 0.510 0.852 3.964 0.832
MGL 2.673 1.007 0.493 0.885 3.918 0.918
AUX 2.652 1.094 0.598 1.063 4.430 0.882
GPR107 2.617 0.817 0.167 0.489 2.253 0.728
PDP 2.737 1.390 0.831 0.642 2.571 0.462
CNNM 2.615 0.847 0.157 0.468 2.015 0.721
CFL 2.274 1.094 0.346 0.532 3.038 0.781
UGT 2.613 0.923 0.237 0.517 2.418 0.651
PP24 2.693 1.054 0.568 1.057 4.671 0.511
EF1l-a 2.127 0.895 0.286 0.393 2.347 0.687
G6PD-1 2.763 1.204 0.692 0.469 2.065 0.009
G6PD-2 2.636 0.880 0.334 0.290 1.323 0.750
Trx-2 2.663 0.989 0.465 0.417 1.790 0.487
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. —BOP bR EZEERAL, N RR e S . 27k, EFl-a, PP2C, CFL. CNNM 211 Z 4150k
BB E NS N ; PDP. G6PD-1, PP2AZIAFAE NS R

geNorm {43 1 -4 ek (BRI e ) S 3 R R e v, TRl I8 BE 4303 — AR R 1 22 [ B4 1 1
A5 (Viner» HeH n A0l RT-qPCR 25 R UER (10 e D3N B ) o 2k, A S 0 F- 2 ek (AR
1S DUF R WS R AIG A8, Bz ke il ir A 5 AR T /R S R, o GPR107
(0.817) 5 CNNM(0.847) S K B P-4 3R EH AR, VA TRARE . [FIE) PDP. GOPD-1 JE[K () F- ¥ 3 8 H i
W, A 1390, 1.204, RAERE, X5 ACHEHIES R~ A, R geNorm 1155 2 MMIH—1k
T Vper, WG A BRI E KSR RN S I H o geNorm 1 561 2 AN ke s N
S TFAE, SRIH TR A 5 18 9 2 35k D e Lk e M R BRI AR A n - an SR 6 PR =[]

B Ve KT EEEZETF 0.15, W4T RT-qPCR 23 BB B iZ BN 1 ALK A BER Bl SE 452, —H.
Vo [T 015, SEARTFERINGSMOIERPT, b 4 0.20 ¢

UL DN Wyys RS Vypey /T 0,15, BDFREAEH] 4 4
WS A 15 B ] HE Y RT-qPCR 554 .
NormFinder A4 7] 43 A1 g 16 PN 2 5 R % 7 19 7%
Sk, Horh R e BN, ek N S 5L R E .
CNNM 5 GPR107 B e E i/, 43514 0.157.

Mo 72 Sl
=]
S

0.167, Rl CNNM 5 GPRI07 R e faw, X 5 0>: RFCIC NI

geNorm JHHF4E Fe—; BESh, MREHISIEPIT iddidids

M5 Bk 2 Miik—3. PDP. G6PD-1, AUX 2 PRUELLIA T

FALI: % B B RIS A I B B4 R —AohREA SRR RS
Bes tkeeper 5 geNorm\ NormFinder ?k 'ﬁ: T~ IEJ , Figure 4 Optimal number of control genes for accurate normalization

TP CAET- I, IR NS RN AR AR EZE | AR R MR — B,
FREMNNSERNMAMRIRMEZ . 2R RS AHCRE . 7E Bestkeeper WP 1, 5 geNorm,
NormFinder 7145 —2, CNNM 5 PDP 3L /3 ik R ke S A RE NS I . BRILZAh, &
KIL G6PD-2 JiZ ik h i RE NS I, HArEZE 52 5% ZEERAL, 43000 0290, 1.323, KR
M 0.750.

o Je i I TUASE Y B0 X 4 RO I M e R T8 A HEY (35 5). MR¥E R 5 9HEZ 5 geNorm #E
TN S EEECH , #ik CNNM. GPR107. EFl-o. G6PD-2 { RFREAk 1L 32 4 J52 RT-qPCR Ak
S 4, PDP AEZENSIN, it 4 FE LA A 45 RS Sk NS 2L N RS C (EH 4 iR K
IIMTEE R—E .

K5 I5MEERNSERNGEEHA

Table 5 Comprehensive ranking of reference genes for normalization

P JUf] - 24 il P JUATF 2% 44
CNNM 2.340 1 PP2C 6.557 9

GPR107 2913 2 MGL 8.572 10

EFl-a 3.162 3 AUX 10.602 11

G6PD-2 3.722 4 Trx-1 11.199 12

SLC36 5.350 5 G6PD-1 11.977 13

UGT 5.826 6 PP24 12.368 14

CFL 5.925 7 PDP 14.491 15

Trx-2 6.160 8

23 HSERREMENEIE

KGR NS IR A R, B 10 AR T R A S MR N SRR R H LR, s —HN 2
K. RILHNSB (CNNM), & %NS (PDP), M 2FMNBHE: HEART 200N S 3K (CNNM,
GPR107) MIHEZ 1T 4 S7 NS IER (CNNM, GPR107, EFl-a, G6PD-2)iEA7)A—4k. MK 5 Al L. FELl
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HRPIACEFE R GRS, #H 4 FS A —kit, Brap B ASERES LA, (HARLRER]
AARF . RN AR, f ] PDP LR SN ST, FrA H 05 AR X 235 5 34 1 25 5 T oAt
35, FROE NG ST bHLH FE R W i AL B = A P E w22, (1 PDP 3E[H 5 CNNM+GPR107+EF1-
o+G6PD-2 SERA B AVENNS, bHLH FEF AXS B 55300 6.28 5 15.70, Wik 22551k 2.5 f5. &
i, M4 RN S E CNNM 15 hR LR, Bk UFGT %K 4h, CNNM. GPR107, EFl-a, G6PD-
2HNSHA TR EES, M CNNM LR BRI, UFGT M4 R F Rk 50.71 F%, (/4 #h N
Z W AW, UFGT L 7249 1% . WL, ABFFEE 0 07 T 1% 3% S HE & 10 2 067 19 55 [ (CNNM
GPRI0T)fE - B B R A&, ABEM 2 NS geNorm BAFHERF M ] 4 FhN S 5L, 7E
10 A~ H LR T 2525 57
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Figure 5 Relative expression levels of ten target genes after normalized by different reference genes
MIEL 6 FTUL: Rl 2E N2 PDP 1321 H B RE D RIA 55 4 Rl N 2S5 K 241515 2 59 1 A SE N 30k
AHOCR BN 0.868 6 (P<<0.01), Ml HIHALIER CNNMVE RS, 5 4 RN S 206 40 5C R80T 38
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0.991 6 (P<<0.01). X} 2 FNZHEE geNorm M 4 M HNSA G LI M 2 oy diriE
RS20 B A JE R A CHE T I 0.999 9 (P<<0.01), B F CNNM, GPR107 3 R4 R XN 2 v 34 5]
geNorm FIFHELE Y 4 NS EH 4G RUER .
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Figure 6 Correlation analysis for relative expression levels of ten target genes after normalized by different reference genes
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