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摘要：【目的】基于可见/近红外光谱技术，以 10 种木材为研究对象，探索不同预处理和特征提取方法下 BP 神经网络识

别木材的效果。【方法】利用美国 ASD 公司生产的 LabSpec 5000 光谱仪采集 10 种木材的光谱图，分别进行移动平均法

处理、移动平均法+多元散射校正 (MSC)、移动平均法＋标准正态变量变换 (SNV)、Savitzky-Golay 卷积平滑算法 (S-G 滤

波器)、S-G 滤波器+MSC 和 S-G 滤波器+SNV 的预处理，运用主成分分析法 (PCA)、连续投影算法 (SPA)、SPA 和遗传

算法 (GA) 联合分别进行特征提取，将提取的特征结合 BP 神经网络进行木材识别试验。【结果】以 SPA 和 GA 联合提

取光谱特征时，移动平均法+SNV 的预处理效果最佳，以吸收峰为起始波段 (Winitial=1 445 nm)、吸收峰个数为特征个数

(Ntot=9) 时，识别率较高，特征个数大部分减少为 SPA 提取特征值个数的一半左右。BP 神经网络的平均识别速度提升明

显。10 种木材的平均识别率为 98.0%，其中 7 种木材的识别率达到了 100.0%。【结论】在移动平均法+SNV 的预处理

下，SPA 和 GA 联合提取光谱图的特征，既可提高 BP 神经网络识别木材的正确率，又可提升识别速度。图 3 表 6 参 23
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Visible/near infrared spectrum wood identification
based on SPA-GA-BP neural network

LUAN Jingran，FENG Guohong，ZHU Yujie

（College of Engineering and Technology, Northeast Forestry University, Harbin 150006, Heilongjiang, China）

Abstract: [Objective] The  purpose  of  this  study is  to  explore  the  effect  of  BP neural  network  identification
under  different  pretreatment  and  feature  extraction  methods  based  on  visible/near  infrared  spectroscopy
technology,  with  10  wood  species  as  objects. [Method] The  LabSpec  5000  spectrometer  produced  by
American ASD company was used to collect the spectrograms of 10 species of wood, which were pretreated by
moving average method, moving average method + multiplicative scattering correction(MSC), average method+
standard normal variable transformation (SNV), Savitzky-Golay convolution smoothing algorithm (S-G filter),
S-G filter+MSC and S-G filter+SNV. Meanwhile,  principal  component  analysis(PCA),  successive  projections
algorithm(SPA), and SPA combined with genetic algorithm(GA) were used for feature extraction respectively.
The  extracted  features  were  combined  with  BP  neural  network  for  wood  identification  test. [Result] When
SPA  and  GA  were  combined  to  extract  spectral  features,  the  moving  average+SNV  method  had  the  best
preprocessing  effect.  When  absorption  peak  was  used  as  the  initial  waveband  (Winitial=1  445  nm)  and  the
number of absorption peaks (Ntot=9) as the number of features, the identification rate was high, and the number
of  features  mostly  decreased  to  about  1/2  of  the  number  of  feature  values  extracted  by  SPA.  The  average 
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identification speed of BP neural network significantly increased. The average identification rate of the 10 wood
species  was  98.0%,  and  the  identification  rate  of  7  of  them  reached  100.0%. [Conclusion] Under  the
pretreatment of moving average method+SNV, the combined use of SPA and GA in spectral feature extraction
can  improve  not  only  the  accuracy  of  wood  identification  by  BP  neural  network,  but  also  the  identification
speed. [Ch, 3 fig. 6 tab. 23 ref.]
Key  words: visible/near-infrared  spectroscopy;  successive  projection  algorithm;  absorption  peak;  genetic
algorithm; BP neural network; wood identification
 

木材在中国可再生资源中占有很大的比例。随着国民经济逐步增长，木材市场不断扩大。目前，由

于优质木材频频出现供需不平衡、木材造假等问题，因此采用多种识别技术来甄别木材种类已成为必

然。木材种类识别除了依照形态学处理外，还可以使用计算机图像识别、DNA 识别等方法[1−3]，但是这

些方法和传统的取样方法一样[4]，都需要对树木进行剖析和制样，对于一些珍贵的木材会造成不必要的

浪费，甚至会降低本身的价值。近红外光谱分析技术是 20 世纪 70 年代兴起的一种新的木材识别分析技

术。它作为一种常用的测量工具，具有快速、无损、在线分析等优势。近几年，学者们应用近红外光谱

技术对木材种类进行了识别研究 [5]，如王学顺等 [6] 利用近红外光谱技术，结合主成分分析 (PCA) 和
BP 神经网络对不同木材种类进行了识别研究，效果良好。谭念等[7] 基于近红外光谱技术，联合 PCA 和

支持向量机实现了木材种类的有效鉴别。

目前，近红外光谱分析技术用于木材种类识别大多采用 PCA 进行特征提取，实现数据降维，但这

种方法的特征值筛选有一定的局限性，仅凭累计贡献率决定特征值的个数，无法通过参数化等方法对处

理过程进行干预，效率和物理实用性不高。连续投影算法 (SPA) 是一种常用的特征波长筛选算法。它能

够利用向量的投影分析，寻找含有最低限度冗长信息的变量组，通过参数调整可实现较强物理实用性的

数据压缩。陈远哲等[8] 基于 SPA 构建了最小偏二乘法回归模型，适用于淡水鱼储藏期质构品质的快速无

损检测。郭文川等[9] 通过比较不同特征提取方式，得出采用 SPA 和随机森林识别准确率最高。遗传算

法 (GA) 用于寻优，广泛应用于机器学习等领域。

本研究将 SPA 和 GA 联用，在运用 SPA 获得特征值后，应用 GA 进一步寻找最佳特征参数，以

提升木材识别的效率和准确率。本研究以红檀 Swartizia spp.、刺猬紫檀 Pterocarpus erinaceus、巴里

黄檀 Dalbergia bariensis、大果紫檀 Pterocarpus macrocarpus、红檀香 Myroxylon balsamu、破布木 Cordia
dichotoma、豆瓣香 Osmanthus delavayi、檀香紫檀 Pterocarpus santalinus、中美洲黄檀 Dalbergia granadillo
和黑檀 Dalbergia nigra 为研究对象，应用可见/近红外光谱仪采集 10 种木材的光谱图，运用不同的预处

理方式叠加进行降噪分析，以 BP 神经网络为木材种类的分类识别算法，探讨经 GA 优化的 SPA 较之常

规特征提取算法的优越性，为更精确高效的木材识别提供参考。 

1    材料与方法
 

1.1    数据采集与主要仪器

数据采集：参与试验的木材共 10 种，试样为 6 cm×5 cm×2 cm 的木块。每种木材制备 5 块样本，共

计 50 块。每块木材分 10 个点采集光谱，以木块横向等分 2 份，纵向等分 5 份，取每份的中心点作为标

记进行采样，每个点采集 10 组数据，取平均值作为此样点的实验数据，即 1 块试样采集 10 组实验数

据，10 种木材共计采集 500 组实验数据。样点采集遵循以下原则：①采谱过程中每 15 min 进行 1 次空

白校正，以保证光谱的稳定性。②每块木材样本大小、薄厚和形状均保持一致，确保样点在每块样本木

块上的属性相同，最大程度缩小误差。

主要仪器：LabSpec 5 000 光谱仪 (ASD 公司，美国)，波长为 350~2 500 nm。用光谱仪配套的软件

Indico Pro Version 3.1 采集光谱数据。 

1.2    主成分分析法 (PCA)
PCA 是一种常用的波段降维手段。主成分通常表示为原始变量的某种线性组合，它们不仅能够代表
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原始变量绝大多数的信息，还可以一定程度上去除噪声，压缩数据，对高维数据进行降维，减少预测变

量的个数[10]。 

1.3    连续投影算法 (SPA)
SPA 是一种使矢量空间共线性最小化的前向变量选择算法，在降低共线信息的研究和有效信息获取

的研究中取得较好的成效[11−12]。本研究应用 SPA 在光谱全波段中筛选出少量几个特征波段，不仅能够减

少参与识别的光谱波段个数，并且可以保证特征波段之间的共线性最小，进而提高识别正确率和速度。 

1.4    SPA-GA-BP神经网络识别方法

当 SPA 筛选后的输入自变量较多且不是相互独立时，利用 BP 神经网络容易出现过拟合的现象，从

而导致所建立的模型精度低、建模时间长等问题，

因此，在构建模型前，有必要对输入自变量进行优

化，选择最能反映输入与输出关系的自变量参与建

模。GA 优化能较好解决上述问题。利用 GA 进行

优化计算，需要将解空间映射到编码空间，每个编

码对应问题的 1 个解。本研究将编码长度设计为

10，木材光谱特征的每位对应 1 个输入自变量，每

一位的基因取值只能是“1”和“0”，如果一位值

为“1”，表示该位对应的输入自变量参与最终的建

模；反之，则表示“0”对应的输入自变量不作为最

终的建模自变量。选取测试集数据均方误差的倒

数作为 GA 的适应度函数，这样，经过不断的迭代

进化，最终筛选出最具代表性的输入自变量参与建

模 [13−14]。GA 优化的设计步骤主要为：首先产生初

始种群，对适应度函数进行计算，其次进行选择、

交叉和变异的基础操作，最后优化结果输出，构建

其模型。设计步骤如图 1 所示。 

2    结果与分析
 

2.1    10种木材的原始光谱图

应用 LabSpec 5000 光谱仪采集 10 种木材的原始光谱图，其中选取红檀的 50 个样本进行对比分

析 (图 2)。
为了更直观地对比 10 种木材光谱图的差异，分

别取 10 种木材中第 1 组数据进行绘图分析 (图 3)。
由图 3 可见：大果紫檀、红檀和檀香紫檀的强度数

值过小，几乎与 x 轴重叠。

由图 2 和图 3 可以看出：同一种木材光谱图的

波形基本一致，但强度值略有差异；刺猬紫檀、巴

里黄檀、红檀香、破布木、豆瓣香、中美洲黄檀这

6 种木材的光谱图从波峰、形状上相似性均较高，

黑檀与这 6 种木材的光谱图也较相似，仅在第 1 个

波谷处形状上略有差异。 

2.2    主成分分析的 BP神经网络识别

原始光谱图往往带有一定的噪声，影响 BP 神经网络识别的正确率，因此有必要对光谱数据进行预

处理 [15−17]。数据的预处理方法较多，本研究分别采用了移动平均法、移动平均法+多元散射校正

(MSC)、移动平均法+标准正态变量变换 (SNV)、Savitzky-Golay 卷积平滑算法 (S-G 滤波器)、S-G 滤波

 

BP 模型建立
输入 SPA 优化后自变量

产生初始种群

适应度函数计算
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图 1    SPA-GA-BP 设计步骤
Figure 1    SPA-GA-BP design steps
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图 2    红檀的原始光谱图
Figure 2    Original spectra of red sandalwood
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器+MSC 和 S-G 滤波器+SNV 对 10 种木材的原始光谱进行了预处理，通过对比分析以确定最佳的预处理

方法。

针对上述的几种预处理方法，分别进行主成分

特征提取。以累计贡献率达 95% 及以上为主成分个

数的选取标准。以选取的主成分为输入向量，40 个

样本作为训练，10 个样本作为测试 (后文测试数据

均与此相同，不再赘述)。应用 BP 神经网络进行木

材种类识别测试，经过 20 次的随机试验，获得各种

预处理下 BP 神经网络的平均识别结果 (表 1)。由表 1
可以看出：采用 S-G 滤波器+SNV 预处理时，BP 神
经网络获得的平均识别率最高，达到了 84.7%。

为了方便对比 10 种木材各自的识别效果，整理

了 S-G 滤波器+SNV 预处理时 10 种木材的 BP 神经

网络识别结果：10 种木材的识别效果相差不大，最

低为豆瓣香 (83.1%)，最高为刺猬紫檀 (85.8%)。 

2.3    SPA-BP神经网络识别 

2.3.1    不同预处理的对比分析    针对 2.2 节中的几

种预处理方法进行 SPA 的 BP 神经网络识别探讨，

以确定最佳的预处理方法。为了对比预处理的效

果，针对 SPA 方法中的起始波段和特征值个数进

行了随机设置。令 SPA 方法中的起始波段 (Winitial)
为 15 nm，特征值个数 (Ntot) 为 10，对各种预处理后

的数据进行 SPA 特征提取，应用 BP 神经网络进行

20 次的随机识别，得出 10 种木材的平均识别率

(表 2)。由表 2 可以看出：对于不同的预处理方式，SPA-BP 的正确识别率有所不同，移动平均法+
SNV 的预处理方法最佳，正确率可达 88.2%，因此，后续在分析 SPA-BP 神经网络识别木材时，本研究

仅针对移动平均法和 SNV 叠加的预处理方法进行分析。 

2.3.2    基于吸收峰的最佳起始波段分析    影响 SPA 特征提取的因素通常有 2 个，分别是 Winitial 和 Ntot。

随着 Winitial 和 Ntot 的改变，提取的特征波长分布会有所不同，从而影响最终 BP 神经网络的正确识别

率，此处探讨最佳 Winitial 的选取方法。光谱图中的特征吸收峰对被分析物质是很关键的特征，因此首先

考虑分别以木材的吸收峰和非吸收峰作为起始波段，通过对比分析，确定最佳起始波段。①吸收峰作为

起始波段的选取。光谱图中分布了大小不一的波峰，选取波峰特征较明显的吸收峰进行分析，以波峰点

 

表 1    不同预处理的 PCA-BP神经网络识别率
Table 1    PCA-BP  neural  network  recognition  with  different

preprocessing　　　　　　

检测方式 预处理方法
累计贡

献率/%
主成分

个数/个
平均识

别率/%

可见/近红外光谱

对照组 95 12 80.2
移动平均法 95 14 81.4

移动平均法+MSC 95 10 82.1

移动平均法+SNV 95 11 83.5

S-G滤波器 95 12 81.3

S-G滤波器+MSC 95 13 82.9

S-G滤波器+SNV 95 15 84.7

 

表 2    不同预处理的 SPA-BP神经网络平均识
别率　　　　　　

Table 2    Average  recognition  rate  of  SPA-BP  neural  network  with
different pretreatments

预处理方法
平均识

别率/%
预处理方法

平均识

别率/%

对照组 86.1 S-G滤波器 86.4
移动平均法 87.2 S-G滤波器+MSC 86.8

移动平均法+MSC 86.5 S-G滤波器+SNV 87.3

移动平均法+SNV 88.2

 

强
度

波长/nm

0

5 000

10 000

15 000

20 000

25 000

350 605 860 1 115 1 370 1 625 1 880 2 135 2 390

红檀 刺猬紫檀 巴里黄檀

大果紫檀 红檀香 破布木

豆瓣香 檀香紫檀 中美洲黄檀

黑檀

图 3    10 种木材的光谱图
Figure 3    Spectral diagrams of 10 species of wood
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为中心点，取宽度相等的波段区间 (每个波段均取 51 个数据) 作为吸收峰的集中分布波段，10 种木材的

吸收峰集中波段如表 3 所示。由表 3 可以看出：10 种木材的吸收峰重叠的波段有 1 230~1 260、1 780~
1 810、1 940~1 970 nm。分别取 3 个波段的中位数作为起始波段值，即 1 245、1 795 和 1 955 nm。因为

Winitial 的数值表示为序列号，所以在此基础上减去初始波段 350 nm，Winitial 最终取值分别为 895、
1 445、1 605 nm。②非吸收峰作为起始波段的选取。将全波段 350~2 500 nm 等分成 5 份，分别在每个等

分波段中随机选取 1 个非吸收峰作为起始波段。本研究随机选取的 5 个波段的波长分别为 365、
1 145、1 345、1 700、2 300 nm。在此基础上减去初始波段 350 nm，Winitial 最终取值分别为 15、795、995、
1 350、1  950。分别以上述的吸收峰和非吸收峰为起始波段值，即以 15、795、895、995、1  350、
1 445、1 605、1 950 nm 作为 SPA 的起始波段。SPA 的特征值个数统一取 10，进行 BP 神经网络识别，

经过 20 次的随机试验，10 种木材提取的特征波长分布和平均识别率如表 4所示。由表 4 可以看出：以

吸收峰作为起始波段时，特征波长分布大多追溯在吸收峰附近。对比表 4 的识别率可见，起始波段为

1 445 nm 时最高，达 90.4%，其余按照 1 605、895、795、995、1 350、1 950 和 15 nm 的顺序依次递减。

不难看出，吸收峰作为起始波段的识别率普遍优于非吸收峰。
  

表 3    10种木材吸收峰个数和集中波段
Table 3    Number of absorption peaks and concentrated bands of 10 species of wood

木材种类 吸收峰个数/个 集中分布波段/nm

红檀 7 920~970、1 010~1 060、1 210~1 260、1 570~1 620、1 779~1 829、1 921~1 971、2 122~2 172

大果紫檀 7 930~980、1 020~1 070、1 220~1 270、1 580~1 630、1 780~1 830、1 920~1 970、2 120~2 170

檀香紫檀 7 932~982、1 023~1 073、1 221~1 271、1 568~1 618、1 777~1 827、1 921~1 971、2 123~2 173

刺猬紫檀 9
763~813、1 222~1 272、1 308~1 358、1 461~1 511、1 548~1 598、1 760~1 810、1 931~1 981、
2 092~2 142、2 211~2 261

巴里黄檀 9
765~815、1 221~1 271、1 307~1 357、1 466~1 516、1 545~1 595、1 769~1 819、1 930~1 980、
2 087~2 137、2 219~2 269

红檀香 9
753~803、1 223~1 273、1 309~1 359、1 463~1 513、1 558~1 608、1 771~1 821、1 932~1 982、
2 092~2 142、2 212~2 262

破布木 9
763~813、1 222~1 272、1 317~1 367、1 463~1 513、1 551~1 601、1 772~1 822、1 933~1 983、
2 097~2 147、2 214~2 264

豆瓣香 9
766~816、1 230~1 280、1 317~1 367、1 468~1 518、1 554~1 604、1 775~1 825、1 940~1 990、
2 095~2 145、2 216~2 266

中美洲黄檀 9
753~803、1 218~1 268、1 305~1 355、1 457~1 507、1 544~1 594、1 769~1 819、1 928~1 978、
2 084~2 134、2 209~2 259

黑檀 9
881~931、1 218~1 268、1 305~1 355、1 452~1 502、1 557~1 607、1 772~1 822、1 923~1 973、
2 092~2 142、2 218~2 268

 
  

2.3.3    最佳特征值个数分析    将起始波段固定为最佳，即 Winitial=1 445 nm，探讨 Ntot 取不同数值时，对

BP 神经网络识别木材的影响。从图 3的光谱图可以看出：红檀、大果紫檀、檀香紫檀 3 种木材样本的吸

收峰有 7 个，刺猬紫檀、巴里黄檀、红檀香、破布木、豆瓣香、中美洲黄檀和黑檀有 9 个。考虑吸收峰

能更好地反映木材光谱图的特征，Ntot 分别取了 7 和 9，同时参考 SPA 的相关文献[18−21]，且基于 BP 神经

网络输入向量过多也会影响识别精度，又分别取了 5、8、10、20、25 进行了对比分析。基于以上特征

数，分别应用 BP 神经网络进行木材识别，每个状态仍随机运行 20 次，获得的结果如表 5 所示。分析

表 5 可知：整体上，当特征值个数取 7 和 9 时正确率偏高，说明特征值个数的取值和吸收峰值有关；当

特征值个数取 9 时识别率最高，达 93.2%，说明特征值个数和单个木材的吸收峰无关，应由整体的吸收

峰来确定。 

2.3.4    10 种木材的最佳识别结果分析     基于最佳预处理方式 (移动平均法+SNV)、最佳起始波段

(Winitial=1 445 nm) 和最佳特征值个数 (Ntot=9)，整理出 SPA-BP 神经网络识别 10 种木材各自的识别结果
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(表 6)。由表 6 可以看出：在最佳参数设置下，SPA-BP 神经网络的识别率较高，大果紫檀、红檀香、中

美洲黄檀和黑檀的平均识别率均为 100.0%，其他木材的平均识别率最低达 90.7%，最高达 95.1%。 

2.4    SPA-GA-BP神经网络识别

针对 SPA 的最佳预处理方式 (移动平均法+SNV)、最佳起始波段 (Winitial=1 445 nm) 和最佳特征值个

数 (Ntot=9)，基于 SPA-GA 的 BP 神经网络识别方法随机运行 20 次，采用 GA 优化前后建模时间明显缩

短；大果紫檀、红檀香、中美洲黄檀和黑檀在采用 GA 优化前后正确识别率均为 100.0%，说明这 4 种木

材在采用 SPA 特征提取时，识别率较高，采用 GA 优化后对正确识别率影响不大；其他 6 种木材采用

SPA 特征提取时均有一定的误判，运用 GA 优化后识别率有一定的提高。其中破布木的识别率由

90.0% 提升到了 100.0%，巴里黄檀由 88.9% 提升到了 100.0%，刺猬紫檀由 90.9% 提升到了 100.0%。虽

然每次仅提升 1 种木材，但通过多次运行，可达到整体提升的效果。

针对上述 20 次运行结果，获得 10 种木材各自的识别结果：大果紫檀、中美洲黄檀、刺猬紫檀、巴

里黄檀、红檀香、破布木和黑檀平均识别正确率高达 100.0%，其他 3 种木材的平均识别率最低达

91.5%，最高达 95.7%，10 种木材的平均识别率达 98.0%。

已有的木材识别研究的特征提取方法主要集中于主成分分析[22]、导数处理[23] 等，主成分分析的平均

表 4    不同起始波段的 SPA-BP神经网络平均识别率
Table 4    Average recognition rate of SPA-BP neural network with different starting bands

特征值数/个 起始波段/nm 10种木材提取特征波长分布/nm 平均识别率/%

10 895
364~368、2 141~2 144；402~410；418~426；324、2 135~2 142；375~383；
432~440；400~408；476~484；420~428；1 452~1 460 89.7

10 1 445
478~586；410~418；423~431；500~508；405~413；436~444；418~426；693~701；
891~899；888~896 90.4

10 1 605
133~135、2 137~2 142；891~899；891~899；2 135~2 142、2 132；419~427；
819~827；420~428；446~454；892~990；893~901 90.1

10 15
2 133~135、2 137~2 142；2 133~2 135、2 137~2 142；408~416；292、22 135~2 142；
375~383；430~438；414~422；461~469；420~428；890~898 88.3

10 795
61~64、2 139~2 143；405~413；420~428；326、2 135~2 142；378~386；527~
535；403~411；478~486；420~422、1 453~1 458；1 350~1 358 89.5

10 995
203~209、2 141~2 142；399~407；418~426；349~352、2 138~2 142；3 381~389；
434~442；421~429；485~493；527~535；1 452、1 454~ 1 458、1 461~1 463 89.2

10 1 350
82~90；891~899；434~442；519~527；416~424；886~894；420~428；694~702；
891~899；888~896 88.9

10 1 950
13、2 135~2 142；379~387；407~415；281、2 135~2 142；293~301；428~436；
1 058~1 066；450~458；413、1 452~1 459；1 452~1 460 88.6

　　说明：木材依次为红檀、大果紫檀、檀香紫檀、刺猬紫檀、巴里黄檀、红檀香、破布木、豆瓣香、中美洲黄檀、黑檀

 

表 5    同一起始波段不同特征波段的 SPA-BP神
经网络平均识别率

Table 5    Average  recognition  rate  of  SPA-BP neural  network  with  the
same starting band and different characteristic bands

起始波

段/nm
特征值

数/个
平均识

别率/%
起始波

段/nm
特征值

数/个
平均识

别率/%

1 445 5 92.3 1 445 10 90.6
1 445 7 93.0 1 445 20 92.7

1 445 9 93.2 1 445 25 91.2

1 445 8 91.6

 

表 6    同一预处理方式 10种木材的 SPA-BP神
经网络平均识别率

Table 6    Average  recognition  rate  of  SPA-BP  neural  network  for  10
species of wood with the same pretreatment method

木材种类
平均识

别率/%
木材种类

平均识

别率/%
木材种类

平均识

别率/%

红檀　　 90.9 巴里黄檀 94.2 中美洲黄檀 100.0
大果紫檀 100.0 红檀香　 100.0 黑檀　　　 100.0

檀香紫檀 90.7 破布木　 94.6 平均　　　 95.7
刺猬紫檀 95.1 豆瓣香　 91.0
　　说明：预处理方式为移动平均法+SNV，起始波段为1 445 nm,
　　　　　特征值数为9个
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识别率为 70.0%~95.3%，导数处理识别率达 98.6%。虽然这些研究识别率较高，但这些研究参与识别的

木材种类大多仅为 4~5 个，对于同时识别 10 种木材未见尝试。经研究，参与识别的木材种类越多，识

别率越难保证。本研究的主成分分析法识别 10 种木材，平均识别率仅为 84.7%。本研究采取 SPA-
GA 联合的特征提取方法，识别对象为 10 种木材，通过调整吸收峰、特征值等参数，最终 7 种木材的平

均识别率达 100.0%，且识别速度提高为原来的 2~3 倍。为了进一步验证识别率的鲁棒性，本研究还采用

多种预处理的方式，使得原始数据表现出良好的稳定性和容错性。最后实验数据均为随机 20 次运行的

结果，说明训练好的模型可以随时间和频次迁移应用，识别性能不会降低。 

3    结论

研究结果表明：①SPA-GA 法识别木材时，选择移动平均法+SNV 的预处理方式效果最佳。②对于

参数的选择，起始波段选取吸收峰比选取非吸收峰识别率更高，特征值个数结合光谱图的峰值个数选取

更恰当。本研究分别选取起始波段为 1 445 nm，特征值个数为 9 个。③SPA-GA 提取光谱图特征时识别

性能最佳。SPA 特征值经 GA 寻优后，特征个数大多减少为原来的一半左右，优化后 BP 神经网络的平

均识别速度显著提升，大果紫檀、中美洲黄檀、刺猬紫檀、巴里黄檀、红檀香、破布木和黑檀等 7 种木

材的平均识别正确率均高达 100.0%，总体识别率较 SPA 显著提高。

本研究仅选择了红檀、刺猬紫檀、巴里黄檀、大果紫檀、红檀香、破布木、豆瓣香、檀香紫檀、中

美洲黄檀和黑檀这 10 种木材样本进行了探讨，对于其他木材的识别有待进一步研究验证。
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