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B 58 7 kM F R B EIE (0~20 cm) F2iF B £ 3 (20~40 cm) P &9 BR 2 o 6 3% 7T 5 P R ALEE (CaCl,-P). 7& % R LA
(Citrate-P), B§/Kf#A A5 (Enzyme-P) Fo T bk & M AL T (HCI-P) 2 440, K3 RRkhst £ 404k 238520 509 %
MBI S LA B AR R, [SR] HBak, RiAmEFE (P<0.05) 3T AR £ & L3 P69 CaCly-P
TR &5 # (28.5%~63.3%) F2IF B L3 F Enzyme-P 2 5% (16.3%~33.6%), wsHEE L+ HCI-P R EH5H A B E ¥
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Abstract: [Objective] This paper aims to understand the effect of nitrogen (N) input on soil phosphorus (P)
fraction and its transformation mechanism in moso bamboo (Phyllostachys edulis) plantation, so as to provide a
reference for achieving efficient use of soil phosphorus in moso bamboo plantation. [Method] Moso bamboo
plantation were used as research subjects, four N addition gradients (0, 30, 60, 90 kg*hm *-a") were set and the
bioavailable P method was used to determine P fractions (CaCl,-P, Citrate-P, Enzyme-P and HCI-P) in the
topsoil (0—20 cm) and subsoil (20—40 cm). The effect of N input on P fraction of moso bamboo plantation and
its relationship with available P and soil physicochemical properties were explored. [Result] Compared to the
control group, nitrogen addition significantly increased CaCl,-P content (28.5%—63.3%) in all soil layers and

Enzyme-P content (16.3%—33.6%) in the subsoil, and had no significant effect on the HCI-P content in the
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subsoil. Low N treatment significantly increased the Citrate-P content (43.5%) in the topsoil and the medium to
high N treatment significantly increased the HCI-P content in the topsoil (101.09%—155.2%). In both the control
and N addition treatments, the different phosphorus fractions were significantly higher in the topsoil than in the
subsoil. Each soil P fractions in the topsoil were significantly and positively correlated with available P
(P<<0.05). Enzyme-P in the subsoil was only significantly and positively correlated with available P (P<<0.01).
N addition accelerated the conversion of soil bioavailable P to available P by decreasing soil pH, increasing soil
organic carbon, microbial biomass phosphorus, acid phosphatase activity. [Conclusion] The input of N
increased the bioavailability of soil phosphorus in moso bamboo plantation, which could provide scientific
reference for efficient management of moso bamboo plantation in the context of global change. [Ch, 5 fig. 3 tab.
43 ref.]

Key words: nitrogen input; bioavailable phosphorus; Phyllostachys edulis; soil microorganisms; acid

phosphatase

BERHRMAESRE T EENRGEFRITER, S54RSS e E IR L™ 7
AHCEY TR R E EZ/EAY, AR LA R, — BB o R LB R BB RS, R
AN TRV A2 R OO IR T 0 . R R E5A A YR — R HLHIE I st 0y A v,
1R G HAA 3 HOTVE A Fo 7 I WA AR R AR YN S (i #2 . BE T, DELUCA 59 #1758
T WA 5B 927125 (biologically based phosphorus method, BBP %), & X T 4 FiiE A4 4ym]
3w 51, o o AR S B U AR SRR 5 nl i JCHLBE (CaCly-P), HIATER IR Eh$2 By I
R AE R R B8589 25 5 R TCHLDTTE W) L A5 2 JCHLE (Citrate-P), T H HSURE 198 14 A28 12 Tl R0 12 T /K
% 1) A HLE (Enzyme-P), FHER R H& U AE W AN i A 400 7 A6 09 A R 1k 1 3 M JE WL 1 (HCIL-P). %
J7 1575 B3] H AR PR ST W b TE AL B RIE B L 0D, A B IR AR AR B R R N IR S iy A
SN

T AN HEBOR G PR A S g, KRR DTRE RN, e [ oy X R TR f ™ B A L IX 2
—, FEiL X 30 a AV IEIRZ) 60% . FHOCHFFE R . I e ot B AU A 23 el 28 + I E A=
Y AN, BN SRR R R TS M, DO R R IEREIE IR RO R, ERVIRY R T4 REA
RO B A R K s B AR AR PR E O R, BAT Phyllostachys edulis 2 - W0 FU 4 r W HL X )72
FAE AP AU, FErh E AR 467.78 Jihm?, 2 EATARIEIFRAY 72.96%, ZHEMFMTIR, FEEHA
AR T T AT AW U P BAT RO ALY, B 2 N ARME i S SR R E ALY, b
THRAAY R S YRR 30%~50%, i THARARGMRA S RGET 0, Fitl, BT EBEE
JCH IR AE WA SO 2 o A 1T e S AR MO R . BAT FE A MAE P E WG HLIX, HADIRFEE O 48
30 kg-hm?+a ', LIAFU BRI : ZURIE N T BT TE Y. BiHd e . HIEmik . -8Rk
YW e A S0, (BRRR T SR 0 WSCR AN B AR ELE (arbuscular mycorrhizal fungi, AMF) /244
U RUTRERT BAT R/ W R WARGE , 2 T X KRR UG RTS 50 F BATARAE = T
PEALETIAIR o AR RPUTEA R R ISR AT, 4387 BATAR A R UR BE Wl 2 53 0 % 1 S LR i A
R, AN F A B TTIRERE, NG BTGB SR . SR BT D SRR AR
LA 5
1.1 HRERER

FEHLA, T WA BTN T IR ZE X LTI o L X R T =AU, AESRIRR 15.6 C, 1Y
Bk 1420 mm, AF85 HIRIN Y 1847 h, 4FXTERRINIZ) 230 d, MOB M WKL ke, kN
100~300 m, +HESHJm T -1l
1.2 Rt

2012 4F 11 AFEREHINIEL T 12 > 20 mx20 m AYSURUREML, JRZEREHBIIRE T 20 m B2 e 25 IX LA
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WG RIT IR AG T LS KRRV R Y 30 kg hm 2+ a2 FIMEFI S RURSAS A L (NH,/NO3)
1.28 ik, LIANEREE (NH,NO;) HEE, BB T 4 MRV TR, 2059 5% B8 (0 kg-hm™2-a',
No). K% (30kg-hm2-a™', Nyj). & (60kg-hm?-a™', Ngo) FEZE (90kg-hm2-a™', Noy), - AbFIESE
3o M 2013 4 1 H 5 A ) Be B R b BT 5% T i Y NHLNO; 3% T 10 LK, fiff FH L 3l e 55 250
BL A A RS ) M e B A RE L 1, 1 a PEAT 12 YRAEEAOMEING, (W] 7E X B AL P9 SR FH [RIRE (4 7 1k I
10 L 7K, &SR GHRASS 52 . A2 0 e 2R 652 M , FEHLAN 2020 4F 1 H AR5 1R WA
1.3 H@mX&ESNE

2020 4F 8 F, FEREFEHL N BENLZEEL 5 A, KPR LZIREY), (R B0 45 A A H ) 1 45
53 HFZE (0~20 cm) FNRIZE (20~40 em) FEATRFE, K& L2 A ENRA, BATLHASFIA 4 C [
FOMERAS o M SC G % o I Sr B R AT AR B, BIBR IR A . R RELY)E, i 2 mm
0, K ARG R 3 0, A RIE ASRIRT R AT 4 °C F-20 °C VKA NARIR DR A AL 2R

+ 3 pH R PHS-3C BRIETHIE , +3A DL 13 4 0E i 2O oM, 34 mR
FH = & RR-Bi IR (HC10,4-H,SO,) 0 E , T 4A %R 0.5 mol- L™ SR 84 (NaHCO3) 1242, FHik Lk
BGE . IR Y A R R 0.5 mol- L NaHCO; 1E 0 + 3R R R 0 07 EZE IR Y H IRk
A TR T V7% P R FEGT i e A A TR — 0 L 0

FF A=A B 8B 4 900 72 R A DELUCA %89 $2 (%) BBP J7ik . 43 AIFREL 0.5 ¢ H4E/mA 4
A 15mL B0, BPEA TN 10 mL 250%, HAd 0.01 mol- L' CaCl, #EEURH T42HL CaCl,-P, 10 mmol-L™!
FreE IR HE OB T H2 B Citrate-P, 0.02x16.67 pkat- L™ B $EHO& FH T 420 Enzyme-P, 1 mol- L™ $hiR$2 X
WH THEHCHCI-P, 7% 3 h, BOHRHC TR A PR B TR FH LA A 4 DN 7 ol o o 43 452
1.4 HiELE

K FH AT H S XU 3R 7 22730 BT (two-way ANOVA) #5850 A - 398 TR 2 K 9 % 1) 52 ELAE FH O 2 0
R ERALTE BRI . R F B 3R 05 2270 # (one-way ANOVA) Flldi /) 355 22 51 (LSD) 1 ARl A
0 Ak B ] - SRR AR B RN 4H 3 25 5, A Pearson AH 36 2 BT T IERE4H 43 5 SRR R 4 AH 6
PE. R SPSS 25.0 358 U 430, BT A B8 A I (bRl 25

2 HEREH

21 TN R R B L SR AL M R R
AT AOOUR F 72000 (G 1) R BREBESL, AR RO R A A B T+
F 1 URMNALIER B RS E (AR LA S R S BRI R W 2 77 2 5047

Table 1 Two-way ANOVA about the effects of N addition, soil depth and their interactions on the concentrations of P fraction content and soil

physicochemical properties

— AAn IR RS> R
sl
F ’12 F ”z F ;12

pH 79.76%* 0.93 253.45%%* 0.94 12.09%** 0.69
SOC 82.37** 0.94 603.42%* 0.99 41.48%* 0.89
TN 105.50%* 0.95 213.81%* 0.99 7.46* 0.58
TP 81.43** 0.94 68.09%* 0.81 0.38 0.07
AP 87.08%* 0.94 101.26%* 0.95 82.86** 0.94
MBP 452.98%%* 0.98 60.66** 0.79 182.38%* 0.97
ACP 512.74%* 0.99 124.97%* 0.94 22.77** 0.63
CaCl,-P 24.50** 0.82 8.26* 0.34 1.59 0.23
Citrate-P 118.65%* 0.93 65.89%** 0.92 39.42%* 0.84
Enzyme-P 30.23** 0.65 8.13* 0.60 9.02* 0.63
HCI-P 574.53%* 0.99 86.86** 0.94 81.68** 0.94

i pHISEREHE ; SOCHEAMUR; TNFEEA; TPIGEWE; APISA K ; MBPIE LM EYI LY ERE; ACPIERRYERBRBETS 1 ;
8T 2253 MR N . *P<<0.05; **P<<0.01
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HEPRALMERT (P<<0.05). M2 WI%0: SXTIR4IMHLL, RZHH0h, FRSmEERILT pH (P<0.05), IR
K 5.2%~6.2%, BERINT RZE PR A SO Y A W R I A 0 B R R Tl R O
(P<0.05), HHESY 5N 14.3%~23.8% . 62.4%~197.8% . 100.1%~229.1% F 47.9%~79.2%; ¥ HE F A5
R EW N T 22 a5 (P<0.05), HEBEAT R 27.2% 1 4.7%; IR B E AL T 3%
J2 A PLAR BT A (P<<0.05), FEIRH 3.9%. TEWRZ T3, RIS E AL T 38 pH AUA DLk 5
L (P<<0.05), FEIESY 91N 6.2%~11.6% F19.3%~33.3%; BEWINT HHEARE . A S@s s YA
W ST AE o B TR R W R WS PR (P<<0.05), Y IR 43 B N 26.59%0~40.8% . 36.4%~175.5%. 34.3%~
59.3%. 23.7%~76.3%. TEXTIEAFEGMAET , W2 LTy pH W3 & T8)2 15 (P<0.05), &
3.5%~10.7%, i HUA T o040 . A8 R0 o o o0 H5OR IR 1 I T 1 Bl 25 (IR T 382 1 18 (P<<0.05), &
K 49.6%~185.3% . 320.9%~819.3% . 26.3%~46.8%. VA Jz 44 Bl T ik 43 BCTEAR ZUR P 80 I T 43531
WERE T 32.7% 1 29.2% (P<0.05), AW A Y i il ot 5 0 BOE T /RS I B335 T 20.2% (P<
0.05), TERZAMIT BEREILT 23.7% (P<0.05)

R2 ARMMREMRETEELEREZ0
Table 2 Soil physical and chemical properties of topsoil and subsoil under N addition treatments
TR em  AbEE pH SOC/(g-kg') TNAg-kg') TPAg-kg') AP/(mg-kg') MBP/(mg- kg') ACP/(umol-g'-h™")

Ny 4.20+0.07aB 24.3140.29 cA 2.29+0.09 aA 0.42+0.01 cA  4.63£0.09dA  7.26+0.31 cB 0.48+0.02 dA
N3y  3.98+0.03bB 30.93£0.16 aA 1.80+0.04 cA 0.52+0.01 aB  13.79+0.04 aA  14.53+0.16 bA 0.71£0.02 cA

0~20
Ngo  3.97+0.06 bA 23.35+0.08 dA 2.10+0.01 bA 0.48£0.02bB  7.52+0.03 cA  14.52+0.17 bB 0.79+0.01 bA
Ngp  3.94+0.03 bB 25.45+£0.50 bA 2.08+0.08 bA 0.52+0.01 aA  8.87+0.09 bA  23.89+0.67 aA 0.86+0.02 aA
Ny 4.65£0.03 aA 16.25+0.05aB 1.42+£0.02aB 0.49+0.02cA  1.10£0.05dB  11.44+0.34 dA 0.38+0.01 dB
2040 N3y  4.36+0.05bA 10.84£0.08 dB 0.96+0.01 dB 0.69+0.01 aA  1.50+£0.05cB  15.36+0.30 cA 0.47+0.04 cB

Ngo 4.11£0.06 cA 14.74+031bB 1.25+0.03bB  0.62+0.01 bA  1.93+£0.01 bB  17.45+0.50 bA 0.55+0.01 bB
Ngg  42140.03cA 12.33£0.10cB  1.01£0.01 cB  0.48+0.01 cA  3.03:0.04aB  18.22+0.25 aB 0.67+0.11 aB
UL AEVING FEEFORTE [ — R A R R ] A A B 6] 22 5 8 3 (P<<0.05) ;. ANEIKE F 1R Ml — R B InAb B R A 4
BT I 22 57 i 2 (P<<0.05)

22 WK ARERE L EBAS RN

TG WH R T 2200 (6 1) R FR M 9808 R HE G1EH, B CaCly-P 4b, X H Al JLF
He WA PR 4 43 i A B BT 3 (P<<0.05). &1 1 s AR BB T 3T A WA S
IR 4> B (P<<0.05), fERJZ I, S5XIRAM L, KA S ER T CaCl,-P Ml Citrate-P Jit
MR (P<<0.05), HEWEST MR 28.5% Fl 43.5%; H AR EHM T CaCly,-P. Enzyme-P Fl HCI-P i1 & 5341
(P<0.05), 34108 5> %N 39.7%. 32.4% F1 101.0%; 7= & W # W T CaClL-P Fl HCI-P Jii & 43 %
(P<<0.05), U&7 51k 63.3% 1 155.2%. FEWRIZ T 3Ed, SXTRAAM L, KA EERIN T CaCl,-P Al
Enzyme-P Jfi 43 %0 (P<<0.05), $# 0 5 %M 33.6% F1 33.6%; H & W E AT CaCl,-P Ji /3 81 (P<
0.05), ¥EURN 44.3%, TREFK T Citrate-P BT /34 (P<0.05), FElRN 24.3%; mAREWIN T CaCl,-P
1 Enzyme-P JBi 5 4240 (P<<0.05), B4R 58.6% il 33.6%; AU IN*T HCI-P i & 4> U TE i 5% 0
HCI-P [ i 4385 b + R B (9 1 in 2 F R . 72 A3, Citrate-P Al Enzyme-P Ji 5 73 BBl 3808 i
A8 10 4 2 AL
23 BASESTEBEUHERMXER

FHOCHESE R (G5 3) 3R] . K2 1A RS 25 B2 70 34 522 Wl 2 TEAHDC (P<<0.05), o 2l i 4y
B 5 Citrate-P Jit 5 70 50 A9 AH 56 M 5 55 (7=0.696), 5 Enzyme-P (=0.522) il HCI-P (=0.417) R 2, 5
CaCl,-P #¢ ik (=0.375); W2 LA B S Enzyme-P £ .5 1EAMH5E (P<<0.01, 7=0.711),

& 2~5 7] W . 43 pH 5 CaCl,-P(P<<0.01). Enzyme-P (P<<0.05) il HCI-P (P<<0.01) & & 2 1 #H
X, IR MERERR B S S CaCly-P. Enzyme-P il HCI-P 2 i 3 IF A 56 (P<<0.01), T3k Yy i
5 CaCl-P &2 3% IE M ¢ (P<0.01), +HEAPLAKY Citrate-P (P<<0.01) A1 HCI-P (P<<0.05) % i 3 1E A
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Figure 1 ~ Soil P fraction content in different soil depth and N addition treatments

Ko 3 pH FIERPERE R M 15 PEXT CaCl,-P (P<<0.01) %3 FETERERASSHXES EEHEX

Y SEM B R 2% o T IRATHLER XY Citrate-P (P<<0.01) A
E@ ?ﬁ ﬂ[’ﬁj Eﬁxj ﬁ% ° Table 3  Correlation coefficients between P components and available P
in different soil depth
3 T‘j]— ‘L@ TiH THERE/em  CaCly-P  Citrate-P Enzyme-P  HCI-P
N . P 0~20 0.375%* 0.696%*  (0.522%* 0.417*
d & 1+ 18R X g op-A
3.1\ LR EX T EBA S R AP0 oase oSl oaiier 0403

AW, BRERZE 3% HCI-P 5 &2 5 50,
SRR RN T 45 )2 A YA RE R R R
2 i R R 0 S BT R A R 3 e U R R
/N TR A 25 R G O BB FE AR LY, fERZAHZE LI, A AKCE B E BN B3 8 T CaCl,-
P M, DR AT R R ARSI T BATMAR R AT, B0 TR R EALBE R, i T
+ 3% CaCl,-P it 73080, 1E32)2 13, Citrate-P Ji /0 BUNE R A AL BT &80, e T & &
A TR EE,, FEED ., SEGHT P SEAMESAR TE R ERS, (25
TR FLIRZSCY, I 1R R WA A MR A B 00 TG AR VE . . B AL PR 5 T Enzyme-
P Hl HCI-P it 404k, O T . /A B W 25300 T B vE B R i (ACP) 150%, F#(K T 148 pH. #
KM MW : Enzyme-P Al HCI-P i i 43405 148 pH S W & fAHSC, iS5 ACP S F IEAHG, X
Fe T B3RS, 7EIR)Z 88, B KA EAS N34 8 25 380 T Enzyme-P i 4040, {HX HCI-P i &
SYETE AR, RIS T IRE T A DL AL, i S TCHLBE R L TE BE R, FEXT
HERAG I T, R2 B P &R o0 10 B i 0 80 TR 2 13, JUHDE HCL-P i /8. Xl Be 2
PN BT MER 2 3R R AR R E i TR 8, R AR R RN AE A I MR T - s
(AL, DTN T 34 A SO TR . BRZL 2 R 98 . BATRJZ 1 (0~20 cm) AR R 2R
Py R HE (20~40 cm) 119 2.35 i, FHLBAT S GAE A W i B - SR B (R B A A0S, SCRE T

PH]: *P<<0.05; **P<<0.01
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Figure 2 Relationship between different P fraction and soil pH
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Figure 3 Relationship between different P fraction and soil acid phosphate
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Figure 4 Relationship between different P fraction and soil microbial biomass phosphorus
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Figure 5 Relationship between different P fraction and soil organic carbon
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