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FE: [ B8 ] Wuschel (WUS) 48 % 9 ) /& 5+ A & (Wuschel-related homeobox, WOX) # % B F XALEMME KL F P A
BEEER., AR S EFE R WOX #Z BT EAMN Eucommia ulmoides ¢ 5-H B g ik 4k 4e, [ Fik )] viatAb L B a4k
BB A ak, AR AW B F O kA WOX RS ARRME T ; A THFIUAKESH EuWOXs Evt 7 A FH AAE
PRI A% P G R A SR AR, 18 ad AT 3% K2 ¥ PCR (RT-qPCR) 4 EulWOXs £2 ‘37t AP Ziye’ »H A RE A F 41y
FABX, [HR]AFEARATRHLET R 8K EulWOXs, 57 T 8 & F & 4k; EuWOXs & @R KA H 182~352 A& 4
B, BFE.EA 510647, »FFH 20.7-40.4 kDa; T 4a g€ AZTAM EuWOXs 3 ATl b, A EARBRE
b, HRELAERNKX R, A WOX R OLIEIABRE, 5742, 1 F 54 EuWOXs KB, EuWOXs 3468 4T,
FasshEr, BHFFPEARE. BafkBAirh BT, KD EulWOXs ALY ot B F Rk 84K, EuWOX13-1
Mt i R F AR ERBEIR, EuWOX132 AR P AKX ERSG, [&# ] A PH 8A EuwOoXs KB, EuW0OX13-1
Fo EuWOX13-2 THRUAEMA T R L F P RAFEETRAEA, B 10 &2 £ 50
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Abstract: [Objective] This study is aimed to explore the distribution and expression characteristics of WOX
(Wuschel-related homeobox) transcription factors in Eucommia ulmoides as they play an important role in plant
growth and development. [Method] First, bioinformatics method was employed to identify the genome-wide of
EuWOX gene family on the basis of E. ulmoides genome database. Then an analysis was conducted of the

expression levels of EulWOXs in E. ulmoides leaf development and Eu-rubber formation based on transcriptomic
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data. At last, the expression patterns of EulWOXs at different developmental stages of E. ulmoides ‘ Ziye’
leaves were detected by real-time quantitative PCR (RT-qgPCR). [Result] Eight EuWOXs were identified in E.
ulmoides genome, distributing in eight chromosomes and they were composed of 182—352 amino acid residues
with their isoelectric points being 5.10—6.47 and molecular weight between 20.7 to 40.4 kDa. According to the
subcellular localization prediction, EuWOXs were all hydrophilic proteins and located in the nucleus. FEulWOX
gene family was divided into three subfamilies, containing two, one and five EulWOX genes respectively. All
EulWOX genes had introns, and each EuWOX protein contains multiple motifs. Eul/WOXs promoters contained
multiple hormones, stress and photoperiod response elemens. The expression level of most EulWOXs in E.
ulmoides leaves was low and the expression of EuWOX13-1 gradually decreased with leaf development whereas
the EuWOX13-2 expression was the highest in growing leaves. [Conclusion] Of the eight EuWOXs genes in E.
ulmoides, EuWOX13-1 and EuWOX13-2 may play important roles in the leaf development of E. u/moides. [Ch,
10 fig. 2 tab. 50 ref.]
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Wuschel-related homeobox (WOX) JEAEWI4FA I B AL % [H 7, J& T Homepbox (HOX) HF %, &
HH 60~65 /™% B iR 2 1 1 R e - I - R e -7 7 B e R PR ST 25 A Bl . WOX KR SE A 43k 3 A dar i Ak 2,
HIVEAC AL 2 (modern clade, WUS), Hi[a]#E{L 57 (intermediate clade) ANy #4637 (ancient clade)!' ™, H:
o WUS J& i BRI WOX KGR Y, WOXs S HTEMMIRIGIE P TR Ffe & g1 %07
&% B\ EAE . $L e IF Arabidopsis thaliana ' WOX K WA 154 B 51, 43 9l J& AtWUS Fl
AtWOX1~AtWOX 1419, Hid, AtWOX10, AtWOXI13 fil AtWOX14 & @ Tzl s> 32, AtwWUS il
AtWOX1~7 % 8 M TJE T WUS 4332, AtWOXS8., AtWOX9. AtWOX11 Fl AtWOX12 & 1)@ F Al
ALy . AWUSTEMRER . fE M ZER A A hRE, BYgERrP I Al n LN,
AtWOX11 Fl AtWOXI12 Z 5 A M an B &L, eI M EHBUL BRI B, AtWUS 25 TAIfa S 445",
BRIk AtWUS e 3K AL Gossypium hirsutum VR 40 R iG & B A ds B &£, KKE Oryza sativa
OsWOX11 PG @RI & A, 131k Oswox11 e gEMEESBE AN, OswOX3A 5K . /)
L BERIMAR () & &Y AE 2R T o A A SV oy A= 8L rh OswoX4 IE PR3 T 40 i, 3Rk
WOX11 (PeWOX11a F1 PeWOX11b) 5, WOX11/12a 34 Jill F4 F& DR A Ak AN 28 AR 20 = 03714 - e /NFE Triticum
aestivum "HEFRIK TaWUS SZMAMERIRETE R T, TaWOX9 R RN IUR TR & B,

WOXs i A+ AN WEMYERK AT, mHZS5MiEmi ., F KR oswoxi24 fi
OsWOX12B S RE P RIA 52T 57 . FER MR A 22 7045, BRIK OsWox11 il (R MR A KR H #2
R FE L RRE AR T i A2 84K AW Populus albaxP. glandulosa ', T 2W1A1%S PagWOX11/12a
S EIRL, RHFERRBMRKAMAEYEARK, LR FF PagERF35 W% PagWOX11/12a F ik,
PagWOX11/12a i@ 33 1 PagCYP736A412 FEH ik, 1875 1% % (reactive oxygen species, ROS ) i [,
PE TR Eh PR

FeAf Ecommia ulmoides 52t fh#} Eucommiaceae £ J& Eucommia )% MFA, i E — HA- P44
Y, WA B s SRR, REE AR A A TR, BB I AR ER M
it o SA SRR . EERSE . OKRIERIE. EEEREE . o WRIRSF 2GSy, BHADUEST . diee.
Poihge | euR e S EEEAE P KT WOXRENFERI M IT . KR . EoK Zea mays. BB . IR
Brassica napus . 8k 5z A f§t Dendrobium officinale 55 T /EH , HEM WOX 1% 5L [H AT GE7E At ff i 2 A9 JE
BSCFRBTE i A HEOCHEVE I o S8 DUR R R ZH B0 S 6l XA WOX R EER 4T T 2 4
YKE MEYE B2z, ST s A i wOX TERE it B A [\ A & B 30 LA BORE A ST 1 i 3R R A
A, FIF R 9 E B PCR(RT-qPCR) Kl AL wox FeH (EuwOXs) 16 <&M kb ‘Ziye’ MAAKH
R FRIAKE, IR EuWOXs DHRERIIR AWF 5T 25 58 et
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1.1 #

H PG ACR AR A7 1l (Beritgi), BUERIESKE—F0 2 4 “Fmt Mg 28 &
Ry, KM Gem K ). gt GEREIFHI), HRARBALAE, & T-80 C IKFEIRF-
1.2 Ak
1.2.1 A4 WOX & & (EuWOXs) #9558 R BALW R 547 BlR T WOX P4 F 2 T TAIR %4k %
(https://www.arabidopsis.org/index.jsp), AR Pfam 5 (PF00046) 7 14 3 PH 41 B4 J4E v i 1%t WOX K
IR 5, RS2 E E ST A P13 AR (5 Bl (National Center for Biotechnology Information, NCBI) i
PR EE A 48 R IR 55 (Conserved Domain Search Service, CD Search) ¥l 25 1 B <P 25 /5, vk B B
SEHE WOX Z5H 3 2 (BT ) BEuWOX FIEM ot , FIFHAEYE B %) 434 EuWOXs I HRALME T
122 A4 WOX R#EA B £ EREALR R RIS WL F AP GBS PR R woXx SERTE Y
R R0 MR SR YR B, R F MapGene2Chromosome v2 (http://mg2c.iask.in/mg2c_v2.0/) B A4F 22 il
WOX FRHH e 82 i . FIH] DNAMAN $EA7 25 1741 X, @4t Clustal X 1.83 XFAEAf . ARG IT
TR . KFEAEK WOXs AT ZIFHI XS, FIJH MEGA 6.0 %B4%7% (neighbor-joining), 42 AL
WHE R 1000 K, MERGKER, AR R JEEE X EuWOXs & i 44
123 EuWOXs #9%# . K52 B3 T 44  FH GSDS (http://gsds.gao-lab.org/index.php) X 14 43 #r
EuWOXs BN & F M4 g T34 . F]FH MEME (http://meme-suite.org/) 2453 #r EuWOXs 37, S50k
‘B M : any number of Repetitions, maximum number of Motifs=20, minimum width=6, and maximum
width<50. 2B EuWOXs J5i ¥ (ATG) L% 2 000 bp /551, ] Plant CARE (http://bioinformatics.psb.
ugent.be/webtools/plantcare/htmL/) 534 EuWOXs Ji 8l F i =CAE FH T
124 EuWOXs # & ik # X, 5 # M NCBI Y Short Read Arshive (SRA) $t#E FErp Nk ‘% fh 15

‘Qinzhong No.1” M AN[EI & EBHE (28 w14t Dyt B4 . SRP218063)1 K i = e #t:

it P ‘ZEfh 2% ‘Qinzhong No.2” | K= ALFREFR </N0E"  “Xiaoye” (RRASS: SRP158357)2¢
MFE SRR, TR 1A J7 W A TR th B BN B i R 1 TR B B 4R (fragments
per kilobase million, FPKM) {H 3/~ EuWOXs 1 ¥ % i5 F B, BUXF 8L (logy) #47 & i 20 Hr, A H
TBtools T-H.Z: il FE K Rk 3%

i Ji] Trizol(CK AR DP424) #2H RNA, 2% 5% cDNA, @1t Primer 3.0 5F5%3 EuwOXs ¥ 5L
Yy 5195 UL 1), i Quant Studio 6GHT 3K Life Technologies /3 7)), All-in-One SYBR Premix EX
TaqTM kit(32 [E Gene Copoeia 2 7l ) # 17 5C B} 2¢ J & & PCR(RT-qPCR) K [, 10 pL R WA R : 2x mix
5.00 uL. IE[EG /051814 0.25 pL. ¢cDNA 2.00 uL, ROX 0.20 pL, AZE/K 2.30 pL. JWFER: 95 C
A 5 min, 95 °C Z8ME 10s, 60 °CiEk 10s, 72 °C ZEMHI 205, 45 DMEHR ., L) UBCE2 JNZS 5L,
I 2GRN 3 A WA A A TR AT
1.2.5 EuWOXs % & Z4E X 254 i@ 1d STRING # {4 (https:/string-db.org/) I & EuWOXs & H i J¥
), R IR, AR R T WOXs EHE M BEAEC R, #ll EuWOXs HAEHE A, it
Cytoscape 3.7.0 4% EuWOXs & [ 5 BAE (5 B A7 P4k A i =,
2 BERG50M
2.1 i WOX XIEEREEREEHRENMHER

FE 2 Al AR R A p RS 2 3] 8 A EuWOXs, 434 dE 8 skt I (K 1); 357 HD {&5F
ZiRER, o EuwoX1 P, St 352 DR MR, EuWOX13-2 )Y F) L, it 191 D EER
EuWOXs 43 F &t 4 22.12~40.36 kDa, EuWOXI11 5 Hi s /v, N 5.62, EuWOX4-1 S5 i K, N
9.04; V40 E A TN 45 R /R . EuWOXs S @M ez, Yohsp/KEEE .
2.2 EuWOXs KR =F Z5#415

F 1] DNAMAN #1 - %) 8 4~ EuWOXs & 12 MUFG 5T WOXs 1 (AtWOXs) TS 25 1 5 #E 47 7 471 43

w
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x1 51%rF5
Table 1 Primer sequences
A4 L5195 —3") TIP3

EulOX1 ATGGTGGGTGACCAGCTTAG TTCTCTGGCCTTGTGGTTCT
EuWOX2 ACCGTACCCCAACCTACTCC ACTTCCCGTTGGATGAAGTG
EulW0OX4-1 GGAACCCTACGCAAGAACAG GCGCTTCTGCTTTTGTCTCT
EuWOX4-2 TAGAGCAGATCACGGCACAG CTAGGGTCGGATGTTGGAGA
EulWOX5 GACGGAGCAAGTGAGAGTCC TCTCCCGTGCCTTATGATTC
EuWOX11 ACTCGAGTTTTGTGGCCTGT AATTGGAGGCATCTGGATTG
EulW0OX13-1 GGTCTGAGGGCATGTGTTTT TTGGAGATATGGGTGGTGGT
Eul0OX13-2 GGGTTGTTCGTCAAGGTCAT GTTGGAATCCACCGTTGTCT
UBCE2 AGTGGGTGGTGCTGTAGTCC AACTCCCGTTTCGTTTGTTG

2 EuWOXs & B R 5 45F1E & I 4 A € i

Table 2 Sequence characteristics and subcellular location of E. ulmoides WOX proteins

wig o R Rtk i CDSbjfrg/ BRI T
EUCI13591-RA  EuWOX1 AT3G18010.1 Super-Scaffold 235  3540694-3 544292 1059 352 4036 578 AfifER%
EUCI2552-RA  EuWOX2 AT5G59340.1  Scaffold912_obj 156744-159 059 810 269 30.16 811 At
EUC15721-RA  EuWOX4-1  AT1G46480.1 Super-Scaffold 242 604 979-606289 618 205 2348  9.04 AfifER%
EUC21176-RA  EuWOX4-2  AT1G46480.1 Scaffold272 obj 37477-39280 642 213 2431  8.82 MK
EUCI18832-RA  EuWOX5 AT3G11260.1 Super-Scaffold 117  336319-340482 549 182 2070 692 AIMIEX
EUC00362-RA  EuWOX11 ~ AT3G03660.1 Super-Scaffold 154  68808-70507 765 254 2767  5.62 AifERZ
EUC00756-RA  EuWOX13-1 AT4G35550.1 Super-Scaffold 233  319468-325733 810 269 3042 622 MUK
EUC02503-RA  EuWOX13-2 AT4G35550.1 Super-Scaffold 71  6332599-6364 092 576 191 2211 654 NI

Super- Super- Super- Super- Super- Super-

Scaffold 117  Scaffold 154 Scaffold272_obj Scaffold 242 Scaffold912-obj Scaffold-235  Scaffold-233  Scaffold-71
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Figure I Chromosome site of EulWOXs genes

Bro &5 (K 2) B/n: WOXs 8 5 HD Z5F s s Sk e S Ho oA HoAr W8 A UM: . 39608l 60 23k
PR 2L ) SETE - B - R - A DB E ,  SEERIA NI A AR SF . ARG (Q). s &R (L) FIHZER (Pro) J2& 1%
i€ I (Helix 1) Z5FB P2 ERR, R . o (o) Mot M2 R E 1 (Helix 11) S5 #4380 7
SFESER, M2, BBRETT (Helix M) 25438085 57, b R 5F &L A R BERE (N). 4
(V). &R (W), RINAR (F). HFABM . R AE 2R R). EAR-like {71 T EuWOX1 .
EuWOX2, EuWOX4-1, EuWOX4-21 EuWOXS5 ', J&T WUS, Wi EuWOXs ZEFE b 2 i HAT PRS2
23 AR WOX XEEBHNRELZEN

Xt 84~ ¥t i EuWOXs., 154 #l B§ JF AtWOXs. 184~ & R ¥ Populus trichocarpa WOX % [
(PotriWOXs). 13 N/KFE OsWOXs. 20 K ZmWOXs & (AT 5537 2 H o, WETR RS K
W SR K 3R 7440 WOXs 85 33 3 [ty i Ak S L i) AR S R B AR R R 3
(WUS)], Himd b2 &F 124> WOXs A, Wi fb 25 22 4> WOXs HH, SARIEb 2w
EASERZ, 4401, 8 EuWOXs H', EuWOX13-1 Fl EuWOX13-2 J& Tz #4k 32, EuwOoX11
J& T b a4k %2, EuwOX1. EuWOX2, EuWOX5. EuWOX4-1 Fl EuWOX4-2 % 5 N 1 i g T
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Figure 2 Sequence analysis of WOX proteins homeo domain in 4. thaliana and E. ulmoides
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WUS, #ZER R S B/ ESCR I,
2.4 EuWOXs EEZEMEREBRIRTEMIE

FIH GSDS M EuwOXs FEHF N - FEEIE, 255K 4 B8R EuwoXs 547 1~3 A
T, EuWOX13-2, EuWOX2 Fl EuWOXS 3£ & A 2 A8 F, EuwOX11, EuWOX13-1, EuWOX3-1
M EuWOX4-2 54 3 MAMNEF, EuWOX1 &4 4 MMNEF . AR LN 2R BE, F—03%
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Figure 4 Structural analysis of WOX gene family in E. ulmoides

RHAEMOEELES ., BTk 20 Euwox11 &4 3 MR+, R8s d ##E ik X 0 Euwoxi3-1
M EuWOX13-2 535 &A 3 AN 2 NN T, 76 WUS W, EuWOX2 Fl EuWOX5 &4 2 MM F, EuWOX4-1
M EuwOX4-2 54 3 MHMRF, T EuWOX1 54 4 b1

B E BRSP4 T R . EuWOXs & 10 MRSFHET, 3045 44 24 Motif 1~Motif 10 (& 5), H:
rh Motif 1 F1 Motif 2 5 AR5F, & WOX WL, fAAE T Hi A EuWOXs 1., Motif 6 5 MRS, 17
1T 4 EuWOXs & 15 (EuWOX4-2, EuWOX2, EuWOX1 #il EuWOX5) . #H[F43 32 EuWOXs &4
AL RS IT . ARl 4 3 EuWOXs 87 Z M A 7E i 3% 25 5%, Motif 4~Motif 10 HAE#E T IAC L 2
37, Motif 3 H7E EuWOX13-1 F1 EuWOX13-2 & (A i HFA7AE

A 1007— EuWOX4-2 B-_-_g o B |

67 EuWOX4-1 O s O
EuWOX2 - -
EuWOX1 o e— -

91 EuWOXS5 [ ||

EuWOX11 L —

97 EuWOX13-1 T e—

100~ EuWOXx13-2 T T —
B Motif 1 Motif 2 Motif 3 [l Motif 4 Motif 5l Motif 6 [l Motif 7 [l Motif 8l Motif 9 Motif 10

5 AP WOX KB Rtk A4
Figure 5 Conserved motifs analysis of E. ulmoides WOX gene family

2.5 b EuwOoXs B FIRK1EATHS

WA F T B g 2R (8] 6) R . EuWOXs Jia 8 FEAFE IS T2 (ABRE) FIK 1R B v T4
(TCA-element), RN TG (ARE), MR JCHF (Box 4) M E K& ARSI T4 (02-site), FrA izl
YE R JT A h e B e i %2, 35 774, Hidh Box 4 JTEA 26 4, B HO & 34%; G-box il GTI-
motif JTLAFA 94, G N 12%, R EuwOXs FERFIR W e 5 EIEHA XK. EuwOXs I 47 46 4
BRI, 32 AN Hba B e, o ABRE fil ARE USRI Z, WEA 144, B tepil o5
4 31% 1 44%, WE7R EuWOXs Z 5HAPRER Kam i, o EuwoXs Fef i 12 AR R F IR
g, Hr 02-site A 6 1, 5 50%-.
2.6 EuWOXs EERZEX S

FIFH Z2fh 15 R R[E LT I SRR X EuOXs 2N B kB T 00T . 4550 (81 7)
AL EuWOXs 7EM FoRTR & B IR GA FEAAAE W 22 5%, EuWOX11 Fl EuWOX2 FEFE A28 | 2k
Mgt ZrEF I AN SRGE . EuWOXS AUAE I ZE R M IR ERIE . EulWOX13-2 7E 4 A B
FPKM {H¥ KT 20, #E0 EuwOX13-2 Z: 5kt R (8 R B #E; EuWO0X13-1 Fl EulWOX4-1 TER:2F
hRILFE R, AN R ETRBKFEEHFEIC, KUY EuWOX13-1 Fl EuWOX4-1 FEAEM 2 R 4%
YER; EuwOX1 FEAERK I rh 3k s AHXS i , A EulOXs BE R IAFREBAR, FPKM H/MT 5.

FIH RT-qPCR A EuWOXs 1€ 580 #L Pt i AN[ELE BB (W25 . At i) iRk K7,
gE R (B 8) I L. EuwOX1., EuWOX2. EuWOX4-1, EuWOX5 Fl EuWOX13-2 78 4= K i rp 3638 e 5
B AR B kKT BT R R, Euwox4-2 TEghi b A B s, EuWOX13-1 TEM 2Erh



55 40 B 1 4] X AR AL WOX FEUHREE NS R AEm Ak B IR 7

A R S 8 aam s, AKRE B
RS 8
B 8 89 G =1 =] o
£22E « Z «Ex 3 g Y
<« 8805 x3g & RN = =
22322 2icyzsfgid o of £22F ., \
FO00008 WECESSECODS =ERE 234 = BRI = R
<OEEE <<<AVVUUOEET <d=& U=O0 iR, w ERKEH
EulOX11 ‘ . - - - 2|2 —
EuWOX13-1 ] , S—
EuWOX13-2 =
EuWOX2 e w—
EuWOXl == ==, [
EuWOX4-1 — ‘
EuWOX5 ——
EuWOX4-2
C GATA-motif AT1-motif

5%~ _AE-Box s5¢,

ATCT-motif
TCT g
TCCq
Box-4
34%

A. EuWOXs FERIAFEIREAE R TCHAN 40 B AR EuOX B K vh % A E o i
C. FFIet A RN TR &

B 6 EuWOXs A B B 3h-FIRXAF R T2
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Figure 8 Expression pattern of EulWOX genes in E. ulmoides leaves at different developmental stages
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