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(AT AR 2 TR R 22 e Wi T4 L X AR R (3 8] A 7= 3 mP O R M AR A 35 S BRGHT SF i S o o 22
PSHI T TS E, WiV BT 311300)

WE: [ B ] KA ERIK Spodoptera exigua ¥ £ IR & 3 Brassica campestris ssp. chinensis FAX R H ¥ 3 R 2 E R
WEF L0 %eh, W B AREAS00 O E A8 E R Y R B Maa ey - F k) . [ Fik ] 48 SRk Ae & R
MR R IR L RO ERT R EERIKEFAyH o, SRR EBRAHE X R (RT-qPCR) 547 B H 4K %
R R A ARERX T, SR ARBLEAS B SN IR B 35 R Y RAK A BB R AL A A B e T AL
(2] 9% P 8 HAFALS M EARLY RIBAB I Mm (P<0.05), HPvilokiktd 4-7 3= 3-F 55 (40H).
1-F A -3-7 R A W A BH (NEO)., 3-%I% A W (GBC) Ao fis W5 3k 49 4- /%M A AL (GBN) A8 E Rk 4h & SR B & A
A ; RT-gPCR £ R 2 7: M ERMBY EREE, O EMWBHEMAT S RAIXILE BcBCATA, BcMAM1 ¢ 23 LR T4k
5 Ng W5 iR AR 09 36 Ae A % (P<<0.05), # BeSOT16 # ELifll5 40H, NEO, GBC 2. EAR%; BAJS, #ERMKLY RKANS
PEH R AR AS B M B E IR (P<0.05), 2L EAF ARk mF R ERERKETIZG -8R, [&it] #3E
BB R ABRRRSE T EARTGER, MAFRTERRENGHEFFY RRA SRR B E IR,
KM K IR Wi T, & ¥ BeSOT16. BcBCATA, BeMAM1 5 A3 4 %, % 4 A B 43 7&, 40H. NEO. GBC #=
GBN B3 m, M FAFastrit R4 R e, B2 &3 443

(B2 ARARFAET; aX; HEAOK; ARERE; SR REHSES
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Molecular mechanism of glucosinolate-mediated Brassica campestris ssp.
chinensis against feeding stress of Spodoptera exigua larvae

HAO lJiaojiao, MA Yonghua, LU Yanchi, XU Li’ai, ZHU Zhujun, YU Youjian

(Innovation Center of Agricultural Effcient and Green Collaborative Production of Zhejiang Province/Key Laboratory
of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of
Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] With an investigation of the effects of Spodoptera exigua larvae feeding on the content
and components of glucosinolates (GSLs) in Brassica campestris ssp. chinensis, this study is aimed to figure out
the initial molecular mechanism of GSL-mediated resistance to the feeding stress of S. exigua larvae in B.
campestris ssp. chinensis. [Method] The effect of larvae feeding on the content and components of GSLs in B.
campestris ssp. chinensis ‘Meiduheiyoutong’ was determined with the application of high performance liquid
chromatography before an analysis was conducted of the expression patterns of key genes related to GSLs
metabolism using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), after which the

activity of glutathione S-transferase (GSTs) in larvae after eating B. campestris ssp. chinensis was detected by

Wk H . 2022-02-23; &I H#H: 2022-09-05
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GSTs kit. [Result] (1) Of the eight GSLs that enjoyed a significant increase in B. campestris ssp. chinensis
after S. exigua larvae’ s feeding, 4-hydroxy-glucobrassicin (40H), 1-methoxy-glucobrassici (NEO),
glucobrassicin (GBC) and glucobrassicanapin (GBN) were the four important GSLs responsive to the feeding;
(2) The significant up-regulation of aliphatic GSL synthesis-related genes BcBCAT4 and BcMAM1 in B.
campestris ssp. chinensis might be related to the increase of aliphatic GSLs, and the up-regulation of BcSOT16
was positively correlated with 40OH, NEO and GBC after feeding by S. exigua larvae; (3) After feeding, the
activity of GSTs in the larvae of S. exigua was significantly enhanced (P<<0.05), and showed a consistency with
the changes of the total GSLs and indole GSLs. [Conclusion] Feeding by S. exigua larvae can induce the
synthesis of GSLs in B. campestris ssp. chinensis, and the increase of GSLs can induce the enhancement of
GSTs activity in larvae. Under the feeding stress of S. exigua larvae, the activation of key GSLs synthesis genes
such as BcSOT16, BcBCAT4 and BcMAM1in B. campestris ssp. chinensis may promote the increase of 40H,
NEO, GBC and GBN which will help better resist S. exigua larvae feeding stress. [Ch, 2 fig. 3 tab. 43 ref.]

Key words: glucosinolates; Brassica campestris ssp. chinensis, Spodoptera exigua;, gene expression;

glutathione S-transferase

2% Brassica campestris ssp. chinensis 41 74t Fl Brassicaceae 7= 4% J& Brassica 2 “F-4 ¥R Y)
AR . SN R E RN EE SRR, T ER AR G R A B R A T R AR
1, BRI 2o . AR, AT AE SRR 25 5 AT S AR TG . | A
JF B = ORI BAT AR A BT A R I AR RO AT RN BB I AT 3 40, W ORI 3
L BRI SRR Y, AR R S AESUED . TR PR XU ) AR T R T
RS R EE EENEM, 0 H R T AERHE YR A P a0 i =B RO RS .
T AT ARG i 3 Ry AR R E S T, (A [ SR A % AN [ A A £ 4 B ST AS [ 2
W H W % Mamestra brassicae %)) 8 7E B g 17 18 A5 | e J A 11 75 S 650 o AL 5 AR 2108, TBCE g
Joetm 2 B B AR IS R B I TR 2 S A S — B B AR A O AR A, B AT TR
HEEA A SRR 0 A B R R R S S B R ST, B S n AR R e B S 5
BB A e in SR AR DGR B B EOE AR OGN, MEWIS 250 & AT Arabidopsis thaliana 5%
Bk8F Myzus persicae. T W%F Brevicoryne brassicae FIE Rk Spodoptera exigu B E 5, BEIiREH
FAE N, AMAM1 FI AtCYPTIF1 FENFe oK 3% 198 . AT, KOORNNEEF %P1 % Bl
T A2 ) O PR A A A B 2 PT DU T S LU A W RR IR e vk, Q4B R T Ler A= 88 AeMAM2 (WAFAE,
fefi 75 G RIS k4l B A HTME R T = AeMAM2 AU RIST Col A28 [RIRE, WF HU{R 28 2 (140l g I s W
R AT S N 3 A5, PFALZ S5 i i $loim Motk B AV 5 (QTL) 8 45 5 e s L b, R M| e i
T B BUAH G EE R ArCYPIF2 (3N B T IR ST IRk, (RN REHRAE /NS, Plutella xylostella . KK
KM Pieris brassicae. ¥y SRk Trichoplusia ni, iS¢0 1 55 853 H Lepidopteran 35 Ht . 78 g {k i 72
o, B R N AR R AT - R T RS R SR SR, IR AL T AR R —— A iR P450s FIAR
KB Rl (GSTs) 55 A HeAih (138 Ry PR AL

AHESE LA SR RS XS G, i ROR A €835 1 (HPLC) FSE B 28Ot & A % X i (RT-
qPCR), FRIY S H o 2 FE K Mk 8 S 2 0 A S 1 i 4y HUBCE 3 T 19 2846 5 0 e 19 43 - VR AL
30 A I BT I SR e 4y H A PN i B S M AR Ak, PRI SRR T U R K U R ) v X &y AR
PN BES E  SE , DUIR S A T AR R 6 S R e SR s S BR E  ek R ARt
A

L I = I

1.1 R
AT AP SEHBERINTT ™ B. campestris ssp. chinensis  ‘Meiduheiyoutong’ , Hi #2554 N
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JEHE (28 C/14 h, 30 000 Ix) 5 B (26 °C/10 h) fE ¥R . PRk K H— “ Nt —0” BHH AR 5.
6 7 B IEA TR AR B IR BT IS i 3 WA 4l H R W T LA MO AR W R A IR AR AR, 2 Ui
SERCIK 3 A BURAC R 4 h, AR R 1 3k
1.2 BUEA®

BRI R, RBRRM K, TRE ARG A 80 C VKA TP AR AF A5 F (B SO i 7 HURE AT
KEROEE o e F AR 3 T . IR 1. 24, 48 I 72 h A EH SRR Ik 4 BB 7R UK b R
PR B Y, ARAFAE—20 °C vkF T2 .
1.3 BREFHIREUE HPLC 4l

Z7% KRUMBEIN 450 2850 ZHU P B B0 7 3R BB AT o FK 0.25 g FEAVBI AR, A 75 C ik
HIRFRA BN 70% WM 4 mL, [FIEIIA 200 uL 5 mmol- L™ A4 2-PN4& LR /E M AR, 1RSI S irE
75 °C KK 10 min, [BIFERE%; 6 000 r-min~' B0 10 min Y04 B3GR, RIATREN4RSEA 2 ]k
3mL 75 C WHARIARTR A ECR 70% (R BRI, R . 250, K 3 IR LIS A IHEIA 10 mL 754
P ER; IRV ML BE, B S mL id 83 2k B DEAE Sephadex A25 [BAHAEHURE, AR 4B 5¢
J&, N6 mL 4K I UEAE T, FRINA 250 pL GRERER A, 30 °C S 12 h, 5 mL ik e, BEBRH
0.45 mm JEALIT IS AE—20 °C FARFE. HPLC ZrHrififfdt 20 L, C-18 JAHFEAEE 30 °C, W shAH A4l
KNG, 1 mL-min™", 0~45 min N G BT BEZMERR R 09%~20%, Kol <k 229 nm,
14 BEESREXEERNEESH
1.4.1 % RNA #932IZ cDNA #93k7F K Trizol 3R EUF 3 B RNA, HEEGEFE A B 11 RNase 154%
BRSPSy 002 g AW S R s A B8 A AR, s R A | mL Filid Trizol MY 5.0
H, EFEEY . 4 °C 12000 r-min ' B5.0 10 min, B 1mL FIW, A0A 200 uL A S0, RIS, UK
| #E 3 min; 4 °C 12 000 r*min"' B.0> 10 min, HX 500 uL FiH#, SN 100 uL FA ST, RFHIES],
VK I #% 3 min; 4 °C 12 000 r-min "' Z.0> 10 min, H 400 pL &R EFEOE, A SRR 15
L, WiENEAT, —20 °C vk S 30 min, 4 °C 12 000 r-min”' 2.0 10 min, 3 FWEW, A 1 mL
BRI BN 75% L5 4 °C 13 000 r-min~' 2.0 S min, FF LW, A 20 uL F4 AR FL 50k
0.1% Wy JoR% BRI /K S fRULTE , —20 °C {R-47#5 H . F NanoDrop 2000 Kl RNA Ff 5RO , Rk
JE R 1.2% ROBEHRBEEE IS B T AG I RNA RS AT i . cDNA 55 1 8545 S IR Takara 23 ] 1 5 5 sAA 5
%> (Prime Script™ RT reagent Kit with gDNA Eraser) A UL B 1E17 .
142 SR kT FRAHBEX R (RT-gPCR) 247 LASEE sEIRIS 10 cDNA AR, 5149 H Primer
SEMFRIE, LAFISKE BeUBCL0 SRR VRN S, JEFME T IR 1. 9Ot i PCRYIGIRZR A .
2xSYBR Premix Ex-Taq™ 10 uL, 10 ng-uL '¢cDNA 1 puL, | FUi5[14#14 0.3 uL, JoEEBRMENFE /K (RNase
free ddH,0) #ME & 15 pLo S AEIR 554 95 °C HiAEME 30s, 95 C ZEME 55, 60 C &% 345, 3L 404
PEER, B0y 3 IREE . FH2-2ACHETHR AT B P, SRR GE A F VAR 5 1 =) o

F1 ZHWHEE PCRRT-qPCR) FRiESH5|HF 5

Table 1 Primer sequences for RT-qPCR analysis

FEPH 2R LW IIGE -3 THLIG -3
BcMAM1 CCAGAGTACATACCGCACAA AGAGGACACCGGAAAACCAA
BcCYP83A1 AGTTCTCCTCTTCTTCCTCT CCATTGTTTGACTTCCTATC
BcCYP83B1 ACACTTCCTCTTTCGTCTCT CATCGTTTGTTGCCCCTTCA
BcMYB28 GAGAATTTGCATTCCCTTGC TGGTGTCCCATCTTTGTTGG
BcSOT16 GGGTTATGGGTTTAGTGCTG CTCCAACCTTCCCTTTCCTA
BcUBC10 GGGTCCTACAGACAGTCCTTAC ATGGAACACCTTCGTCCTAAA
BcAPK2 CAACACCGTCTGGGATCTGC AACCGACATCGACACCTGGA
BcSURIL GGCGTTATCTACATGCTGTTCG CAGGTGCGGAAGCAAGGGTA
BcAOP2 TGGATTTGCACCAAAGGAAA AGATAGATCACTGGAAGTTG
BcBCATA AAGCAACTCGACTCAAACACT CGATAAAACCCGAATCCTAAT
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1.5 GSTs i&H4ME

HRAE GSTs ARG UL 45 (F s U EA FRA ) i#47,
1.6 ZHEATE

K Excel 2020 #EATHUR 4 5 00T, i SR ¥2 E 0 3 A FEE WP EHrfER; RA
SPSS 22.0 #7257 WEM T, P<0.05 hZEFEE.

2 HERESN

2.1 WMEERBHARRXNAZREREERKENZIG

FE SRR A I B 8 R AT ALy (% 2), Mo BRI 3 B WSIWEIE 4 B S5 EG LR, a0k 3
FE7R s B SRR ik 4l d B S [ B ] (1. 24, 48, 72 h) [ ST T i BE JR v B L I 2 4 i e A
(P<<0.05), MU 17048 h IFHE IR K, 72 h iAIE(E (2.03 pmol- g "), J&XF BRI 1.8 f% 5 W5|mk i 70 i 1y e
TR AR L . BRI S B S5 P W BN (P<<0.05), T4 BIFEHUE 48 F11 72 h ik 5
WEAH, JEXTHRAY 1.6 A 2.4 f%; HUE 1 RN 24 h B D5 F JR A 17 o0 i B8 /R vk B 2 1 2 (P<<0.05) L FH#a#i.
X — 25 R R AT R L) A B BB T PSRRI & s, P s Wi 11 A8 (i A I B,k BH s
R T BEAE SR A i R A RS k4l s R rh R AR . 3-8RI FR LR (GBC) A1 1-
R S 0| W -3-F LB 1T (NEO) 7E SIS IR 4y U J5 AW, ZEHCE 72 h BRI, 43 2 % HE Y
4.7 F1 4.9 %5 i 4- L FEEARTE (GBN), 4-F2FEM|WE-3-H BT (40H), 2-F2FE-3-TIA AT (PRO) 1 4-
FH 4 s | - 3- FH 3R (AME) TS 50 Je gk s, Horh GBN X0 ik 4l Ho B ()i o e M5 B, 48 h
IRWEE, JEXTIRAY 1.9 f%; 3- T ML H (GNA) Fl 2-7K ZFERH (NAS) 24 AN &, AXAERI LA a] 5
BT Han

x2 BXmE4LS

Table 2 Components of glucosinolate in B. campestris ssp. chinensis

AR 455 FRrIE 25 Iy PRER I} ] /min
2-$25E-3- T I A progoitrin PRO gy i 388 7.790
3-TJ&HER 1 gluconapin GNA i3 372 14.480
4-FR LM 3-F 37 1 4-OH-glucobrassicin 40H g 463 17.067
4-13 475 A6 glucobrassicanapin GBN Rl 386 22.087
3- 5| FH B85 1 glucobrassicin GBC L9 447 26.753
2-9K 2, 4£ 871 gluconasturtiin NAS by 422 31.497
4-F 48 3315 [ I FFY L 1 4-methoxy-glucobrassicin 4ME n |k 477 32.433
1- FF 4 - 3- M R FH S5 T 1-methoxy-glucobrassicin NEO g 477 40.793

R3EHSEREHL REAX B RmE REERRERNZIN

Table 3 Effects of feeding on the content of glucosinolate in B. campestris ssp. chinensis by S. exigua larvae
T 1 o B O Wk E /(umol- g 1)

Al EMGRE
0 (ck) 1 24 48 72h

GNA 0.154+0.010 b 0.174+0.005 b 0.220-+0.003 ¢ 0.132+0.003 a 0.132+0.002 a

Re G PRO 0.152+0.003 a 0.150+0.002 a 0.1760.001 b 0.182+0.002 ¢ 0.179+0.001 be
GBN 0.434£0.032 a 0.4660.009 a 0.550+0.018 b 0.819+0.004 ¢ 0.781+0.001 ¢
SN 0.724+0.009 a 0.792+0.001 b 0.959+0.008 ¢ 1.132+0.002 e 1.116£0.004 d
40H 0.157£0.012 a 0.177+0.003 b 0.222+0.004 ¢ 0.257+0.006 d 0.234+0.004 ¢

— GBC 0.044+0.013 a 0.062:£0.000 b 0.105+0.003 ¢ 0.130£0.001 d 0.209+0.005 ¢
4ME 0.089+0.026 a 0.69::0.000 a 0.140+0.003 b 0.154+0.002 b 0.135+0.000 b
NEO 0.054+0.011 a 0.067+0.001 b 0.092+0.001 ¢ 0.162+0.003 d 0.263+0.001 ¢
S 0.3510.001 a 0.375+0.001 b 0.565+0.005 ¢ 0.703+0.010 d 0.840+0.008 ¢

TR NAS 0.096:0.004 ab 0.109+0.002 ¢ 0.142+0.001 d 0.086+0.001 a 0.101+0.002 be
SR 1.154+0.003 a 1.277+0.002 b 1.664+0.014 ¢ 1.921+0.011 d 2.032+0.014 ¢

LWL AR IRING 5 R R AR AR ] ) 22 52 1. 25 (P<<0.05)
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22 FHFEEHHHNEXNAZHESHEXERRIENZIE

il RT-qPCR X #5212 ik 4y BB S PSRBT A A DI P ek i i E AT 0T o 4528 (1 1) B
F SRR 4 MBS, B W B A A 56 3L Bl BcBCAT4 ., BeMAM1, BeCYP83A1, BeMYB2S .,
BcSUR1 WY FIR BRI AR E YA, BUIRCE 1 h HRGk i 3% BiE (P<<0.05), 48 h B R IAK Pk
R, T S0 W 1 B B A DG L R BeCYP83B1 I HIAH S 1 A8 Ak #h s Wi 05 W o 4 I 6 L Rl
BcAOP2 FIWS| WA A BUAH G EE K BeSOT16 BEHUEL B[] i E A SRk T B s, 72 hikdwems, or 2
XTHEAY 4.2 F1 3.7 £ BEAk, B A R R A B AR e K (GSH) & BUAH CHE H] BeAPK2 6 5%
TV Bk, 72 h B HL R RSN T 4.7 %

BeSOT 16 d [ BcCYP 83B1 BcAOP 2
4 r c cd

EPAESSON s

0(ck) 1 24 48 72

100 - BeMAM 1

O(cky 1 24 48 72

30 BeCYP 8341 ar BcSUR 1 d §r BeAPK 2

0(ck) 1 24 48 72 0(ck) 1 24 48 72 0(ck) 1 24 48 72
HCETIN )/ B LI )/ BT [/
N ) B AN BB I 6] 6 2 57 .3 (P<0.05)
1 R R G ERFARM R LR R XX G Hh
Figure 1  Effects of S. exigua larvae feeding on expression patterns of key genes related to glucosinolates metabolism in B. campestris ssp. chinensis
2.3 FHEEBELHHRMER GSTs iFHERTL
M 2 K. BHSER A RS, AR GSTs 37 A4k &84k, BUED 1 h IS PR 5 R
i3 (P>0.05), {H7E b5 A0 B 0] 05 B 05 P S5 14 08 (P<<0.05), 24 h iR N RIZL, 72 hikIgfEH, R
63.6 pmol-mg '*min', WXFREFE T 155, AL, FOSREH0H o BE /R VR BE A B s 1 S S i i &)y e
PR 271 GSTs T HEr 4R .

3 3tk
EUATRIZE LI IR R BB A RIS R BT BT 5, TSR 2 53 BEWA 240 2 R

M R BB, H Wk AN SR 5T IR Pieris rapae TE BRI IV R 05| W T B 5 R 5 g 14 AR
W, ARZENS, BCRm| e S R R AR, A R et s, FERTS R TR
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B 7 bt LML, & B GS-Elong. GS-AOP,
TGGs &5 17 /5 5 B8 W % Bt 15 19 Bt o A D6 B,
SONTOWSKI 26" % Bl . 481 I+ 94 52 0 ik &)y U
)5, GS-Elong o £ 85 11 A WA G HE K AtMAM1 |
AMAM?2 . AtMAM3 % 5oKF- 2B 38 0n - [ AE OGRS
WiEs W B LT, R ER TS5 T
LB T ) T S e &y B I AR S NG o AR RN
PSRRI 4 I ), AB 7 46 1T GS-Elong ok 1 24 43 7
DA BeBCATA . BeMAM .35 iR, BENS HU L Al/h
R B A Rt B S B, GBN IR R St R s s, AR T RORA I [ 22 5 44 (P<0.05)
VEWINR T HEm 1T L HJE GBN 25 17 ISR B2 B & K5 3 R R4 & GSTs & 4
WA R B N o SR, BcBCATA. BeMAML K xfe o '
%%it7k¥5*ﬁ@ﬂ§‘ﬂﬁﬁ%@ﬁﬁ‘ E@ﬁﬁ@;ﬁﬂ?]}fﬁfg Figure 2 Changes of GSTs activity in S. exigua larve after feeding on
FEZES, ULBIBR T BT AW A U R B R )
Gh, WTREE S K HAMMLTIE S 5+ R 25 2 m AR IR A = i 5 AR ) B R R . Ieah, i
&) 40H, NEO. GBC 7ERI SRR &)y H b A8 vp fd 238, 150 BH M| W IR B 11 7T REAE 11 S HRAEN I SR 1
IR HEE S R ZHEE EEAMEH . KUMAR ) 20158 % d 5 & 5722 Brassica juncea LT 45
WA RN, RIKIE R Helicoverpa armigera % 31 ()38 T 53732 b GNA 1 GBN f{) & & 52 77U AH ¢,
MRS W Spodoptera litura #H AT 5 GNA . GBN FIEBAFHFEREN (SIN) B9 & w2 A, d—
ST R BT AR AT SN AR BRI RSO i P 25 5 5 BjuMYB28 [FIVRMIEST St b i 25 5 3%
A G, ARBEFE T, EESRAR RS M ECE M T, F3E 40H. NEO. GBC W35 &y d {4 N f# 27 il
GSTs {1 M IS T A ARG IE R BeSOT16 SIEASE, i BeSOT16 T PE 4 51 AT R 2 S S i ik 4l d
BT MR A A B i R, SRR T A SRR ROk T . it — 25 IR BeSOT16 1Y
AW TiRe, AW BcSOT16 T8 S U F S A 40y R i o A% rh B 3] 1 51 224 H

R R, AR B R R RS, AR T 2R BB, G A A A vk AR gt
PO, BT SRR A e B A B s AR RO B B, HERERMER, R, Tl
REVS T R AR N A1 (A R P450s il GSTs 45 F- B fif v filf R JE R () 3Rk, 140 B MG 11 S5 A 0 vk A 40 o
FIARIBHRE Sy 22244 I M STk Spodoptera frugiperda % B AN (0 2K P4S0s T M AT LA 13| WAk e 1 17
fiff = s | W -3-H B IS 0 R R . S OO R Y TRkl LRI T AR R A B, BRI AR Y
GSTs T80 TN SXTHEA L, BCESHATIPkET, SIfi GSTs iR Uit @™, AR
TR gl OB SRS, AR GSTs TEPEAKIE TR, 5 P13 BVB 1 B m| WS 0 1 o 6 P8 R VAR 2
RS —BoE, R TR R SR 4 B GSTs W& PE R SVE R, i B ngI s I % 1 T BETE 1138
HEA 2% B A SRR ik R R R v R A O E AR .

4 b

FHSE R ke 4 B B VR 938 BeSOT16. BeBCATA. BeMAMI 28R AF & G L i K1k, T
HE A SEBRTT 0T A R B RGN, B S SRR e 4y s R T 8 i, W[5 40H. NEO.
GBC FI i i & 19 GBN (1% 52 b G A s 2, {ELBRE 1 Jo o B8 7K VA B8 118 Tk o8 S 23 175 3 i S 00 0k 4l ik oy
GSTs I PERYIGER , H2m G R R 4 Hos B i i dRE 77

5 5F ik
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