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摘要：【目的】针对时空融合方法在遥感植被状况调查及动态变化监测中的应用，比对时空自适应反射率融合模型

(STARFM)、增强型时空自适应反射率融合模型 (ESTARFM)、回归拟合空间滤波和残差补偿模型 (Fit-FC) 和规则集回归

树融合模型 (RPRTM) 等 4 种时空融合模型对归一化植被指数 (NDVI) 的融合效果。【方法】以三江源地区 2 块具有差异

性地表特征的区域为研究样地，采用上述 4 种时空融合方法，融合空间分辨率 30 m 的 Landsat 8 影像和 250 m 时间步长 16 d

的 MODIS NDVI 数据，生成步长为 16 d 的 30 m 空间分辨率的 NDVI 数据。基于 Landsat NDVI 影像通过定性的目视判

别和定量的统计分析来评价不同融合模型结果的空间特征模拟效果，并以真实的 MODIS NDVI 时间动态为参考，分析了

不同融合方法对地表植被动态特征的拟合效果。【结果】①关于空间特征的捕捉，在地表覆盖状况较复杂的区域，

RPRTM 融合效果最佳 (R2=0.82)；而对于输入影像差异较大的区域，ESTARFM 融合效果最佳 (R2=0.95)。②关于时间动

态的捕捉，RPRTM 针对不同的植被型均取得了最佳效果 (R2 为 0.97~0.99)。③相对于模型输入数据的时空可比性，地表

异质性对 STARFM 和 ESTARFM 融合效果的影响更大。【结论】4 种时空融合模型能有效用于生成高时空分辨率的

NDVI 数据，不同模型其融合效果各有不同，RPRTM 在复杂地表区域与模拟植被生长动态变化中均有较好表现。图

4 表 1 参 38

关键词：时空数据融合；归一化植被指数；增强型时空自适应反射率融合模型；规则集回归树融合模型；回归拟合空间

滤波和残差补偿模型

中图分类号：S758            文献标志码：A            文章编号：2095-0756(2023)02-0427-09

Comparison of four fusion models for generating high spatio-temporal
resolution NDVI
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Abstract: [Objective]  In  order  to  choose  adapted  fusion  methods  in  vegetation  survey  and  dynamic

monitoring,  we  applied  four  different  spatio-temporal  fusion  models  including  spatial  and  temporal  adaptive

reflectance  fusion  model  (STARFM),  enhanced  spatial  and  temporal  adaptive  reflectance  fusion  model

(ESTARFM), regression model fitting,  spatial  filtering and residual compensation (Fit-FC) and the rule-based

piecewise  regression  tree  model  (RPRTM).  [Method]  Based  on  the  four  spatio-temporal  fusion  models

(STARFM, ESTARFM, Fit-FC and RPRTM), two sampling regions (region Ⅰ and Ⅱ), with different surfaces

characteristics in the Three-River Headwaters Regions were taken to generate the high spatial information of the

Landsat  NDVI  (30  m,  16  d).  Based  on  Landsat  NDVI  image,  the  spatial  characteristics  of  the  fusion  data  of 
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different fusion models were evaluated by qualitative visual discrimination and quantitative statistical analysis.
Meanwhile,  based  on  the  MODIS  NDVI  time  series,  the  fitting  effect  of  different  fusion  methods  on  the
dynamic characteristics of surface vegetation was analyzed. [Result] (1) RPRTM had the optimal spatial fusion
performance in region Ⅰ (R2=0.82); and ESTARFM performed the best in region Ⅱ (R2=0.95). (2) RPRTM has
achieved  the  best  fusion  for  capturing  temporal  dynamics  (R2=0.97−0.99),  where  the  NDVI  dynamics  were
highly consistent with the temporal variations of MODIS. (3) Compared with the spatio-temporal comparability
of  model  input  data,  landscape  heterogeneity  had  a  greater  impact  on  the  fusion  effect  of  STARFM  and
ESTARFM. [Conclusion]  Spatio-temporal  fusion  models  can  be  used  effectively  to  generate  NDVI  data  at
high spatial and temporal resolution, with different models having different fusion effects. RPRTM performing
well in both complex surface areas and simulated vegetation growth dynamics. [Ch, 4 fig. 1 tab. 38 ref.]
Key words: spatio-temporal fusion method; normalized difference vegetation index (NDVI); enhanced spatial
and  temporal  adaptive  reflectance  fusion  model  (ESTARFM);  rule-based  piecewise  regression  tree  model
(RPRTM); regression model fitting, spatial filtering and residual compensation (Fit-FC)
 

植被对于气候变化、人类生存和社会发展都具有重大意义。遥感影像已成为提供植被状况连续信息

的重要技术手段[1]，传感器的红光和红外波段可以反映高达 90% 的植被信息[2]，常被用于构建遥感植被

指数，以实现大范围的植被动态监测。目前，归一化植被指数 (NDVI)是应用最多的植被指数之一，被

证明在地表植被调查[3−4]、碳循环监测[5−6]、作物产量评估[7]、荒漠化研究[8−9] 等方面均有较好的应用。遥

感技术发展近半个世纪，卫星传感器仍不得不在时间和空间分辨率之间做出权衡，少有数据能同时兼具

高时空分辨率的特征[10]。最为典型的 Landsat系列卫星数据，其多光谱波段影像空间分辨率为 30 m，被

广泛应用于植被覆盖类型制图及状况调查[11−14]，但其 16 d的重访周期，加之云雨天气影响的延长，严重

影响了其在植被动态监测方面的应用[15]。而 MODIS数据的植被产品具有很好的一致性及多时相的特

点，在植被物候、状况动态等监测中有良好的应用[16−20]，其最高 250 m的空间分辨率，难以捕捉较小区

域内的空间特征差异和满足精细化的植被监测管理[21]。为实现高精度的地表植被状况监测，研究人员提

出了多源遥感数据时空融合，即通过融合高空间分辨率和高时间分辨率遥感数据，获得高时空分辨率

数据[22]。

不同时空融合方法从不同角度出发，在不同研究区域获得了较好的融合效果，但是各方法之间的差

异及其适用性还有待深入研究。石月禅等[23] 以盈科灌溉区域为例，利用多时相 MODIS数据和高空间分

辨率的 ASTER/TM影像，比对了基于时序数据的时空数据融合 (STIFM)、基于混合像元分解的时空数据

融合 (STDFM)和基于增强型时空自适应反射率融合 (ESTARFM)等 3种模型，认为对于 NDVI数据的融

合，ESTARFM在异质性较强区域具有更好的适用性。HOBYB等 [24] 比对了时空自适应反射率融合

(STARFM)、ESTARFM和灵活的时空数据融合 (FSDAF)等 3种模型融合生成高时空分辨率 NDVI数据

的效果，认为 ESTARFM相对于另外 2种模型融合结果更为准确，同时对于输入数据质量的敏感性较

低，具有较高的稳定性。ZHOU等 [25] 比较了 6种典型的时空融合模型，包括基于分解的数据融合

(UBDF)、线性混合增长模型 (LMGM)、STARFM、回归拟合空间滤波和残差补偿模型 (Fit-FC)、一对字

典学习模型 (OPDL)、灵活时空数据融合模型 (FSDAF)，并推荐由 WANG等[26] 提出的 Fit-FC模型用于

NDVI影像的时空数据融合。然而，这些研究多集中在不同模型的空间细节特征融合效果的比较，而少

有关注不同模型的动态特征模拟效果。

三江源区域位于亚欧大陆中纬度地区，是全球气候变化最为敏感的生态区域之一，还是中国重要的

生态缓冲区和生态系统服务功能区 [27−28]，因而该区域的植被状况一直受到研究人员的重点关注 [29−31]。

本研究在三江源地区选取了 2块地表特征具有一定差异的区域，比较 STARFM、ESATARM、Fit-FC和

规则集回归树融合模型 (RPRTM)等 4种不同遥感数据融合模型在 NDVI时空融合中的应用能力。并以

真实的 Landsat影像为参考，通过定性的目视判别和定量的统计分析来评价不同融合模型结果的空间特

征融合效果，同时将融合结果与 MODIS时间序列 NDVI进行比较，深入讨论不同融合模型的优点及适
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用性，及时准确地获取三江源地区生长季内连续的时空高分辨率数据，以便进行地表植被状况监测。 

1    研究区与数据
 

1.1    研究区域及数据源

研究区域位于三江源的东北部，青海省贵南县北部地区 (35°41′12 ′ ′~36°09′20 ′ ′N，100°31′52 ′ ′~
101°12′39′′E)。在研究区内选取了 2块具有不同地形特征的区域 (图 1)。区域 1 (15 km × 15 km)位于研究

区的西南角，主要地表覆盖类型为农业用地，其次是草地，在南部有部分的沙地；该区域地势较为平

整，地表覆盖状况较为复杂，空间纹理特征丰富，且地物边界特征清晰明显。区域 2 (12 km × 12 km)位
于研究区的东北部，主要地表覆盖类型为森林，其次为草地；地表起伏较大 (最大海拔高差达 945 m)，
北部有河流经过。所选择的 2个区域地形地势特征及其地表覆盖都不相同，但都是在三江源区域非常具

有代表性的地貌和植被类型。本研究采用的土地覆盖数据为 ChinaCover[32]，空间分辨率为 30 m。
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图 1    研究区域地理位置、土地覆盖类型及 Landsat-8 全色影像示意图
Figure 1    Location, land cover and Landsat-8 panchromatic images of the study area

 

收集了研究区域 2013年植被生长季内少云遮挡的高质量 Landsat-8 OIL影像共 3景，获取日期分别

为 6月 12日 (第 163天)、6月 28日 (第 179天)和 10月 2日 (第 275天)。在 ENVI 5.1软件中对影像进行

了辐射定标、大气纠正后，通过波段运算 (近红外波段 841~874 nm、红波段 620~670 nm)，得到 30 m分

辨率的 Landsat NDVI数据。

MODIS NDVI数据来自美国地质调查局 (https://lpdacc.usgs.gov)发布的 MOD13Q1产品，16 d最大合

成 NDVI，空间分辨率为 250 m。经过 MODIS 数据重投影工具 (MODIS Reprojection Tools，MRT)进行

转投影和格式转换，同时将 HDF文件格式转为 TIF影像。MODIS NDVI数据获取日期分别为 5月 9日

(第 129天 )、 5月 25日 (第 145天 )、 6月 10日 (第 161天 )、 6月 26日 (第 177天 )、 7月 12日 (第
193天)、7月 28日 (第 209天)、8月 13日 (第 225天)、8月 29日 (第 241天)、9月 14日 (第 257天)、
9月 30日 (第 273天)。 

1.2    多源遥感数据时空融合效果分析

比对 3种基于权重的融合模型，包括 STARFM[17]、ESTARFM[33] 和 Fit-FC[26] 以及一种基于学习的融

合模型 RPRTM[34] 在 NDVI时空融合中的应用效果。基于 30 m的 Landsat影像和 16 d步长的 250 m
MODIS NDVI数据，采用 4种不同的时空融合模型生成 30 m、16 d步长的 NDVI数据。然后，根据融合

后的 NDVI数据的空间细节特征表达能力和时间动态监测效果，对 4种不同融合模型进行评估。

以真实的 Landsat NDVI影像作为参考，定性的目视判读和定量的统计分析来评价不同模型结果的

空间融合效果[35]。目视判别可以通过查看融合后数据的空间细节特征，给出融合结果优劣的定性评价。

而统计分析则可以通过计算站点尺度真实影像与融合结果间的决定系数 (R2)，平均绝对误差 (MAD)，以

及均方根误差 (RMSE)定量评价融合模型的效果。其中 R2 越接近于 1则表示模型的拟合效果越好，

MAD、RMSE的数值越低，表明回归模型精度越高。采用标准差 (Std)、平均梯度 (AG)和信息熵
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(IE)等 3个特征指标对融合影像进行定量分析[36]。以真实的 MODIS NDVI时间动态为参考，分析不同融

合方法对地表植被动态特征的拟合效果。依据时间距离最短原则选择模型输入数据，采用 4种时空融合

模型分别生成了 2个研究区域内的 NDVI时间序列数据。再分别统计了 3种不同植被类型 (草地、耕地

和森林)在 MODIS以及 4种不同时空融合模型生成的 NDVI时间序列内的时间动态，通过相关分析比较

不同融合模型结果与MODIS NDVI动态特征的相似性。 

2    结果及分析
 

2.1    空间细节融合效果的目视判读

图 2为以 6月 28日为目标时刻，STARFM、ESTARFM和 Fit-FC和 RPRTM生成的 NDVI结果，以

及对应的 MODIS NDVI真值 (6月 26日)、Landsat NDVI真值 (6月 28日)。通过目视解译分析，在 2个

不同区域，这 4种融合模型结果均能在一定程度上显示较高分辨率的空间分布特征。从区域 1的

Landsat NDVI真实影像 (图 2A)可以看出：该区域具有较为丰富的纹理特征，地块之间边界清晰，与

MODIS NDVI影像 ( 图 2B)空间格局基本一致。STARFM融合结果 (图 2C)中斑块化问题较明显，耕地

边界出现锯齿状模糊不清，ESTARFM (图 2D)和 Fit-FC (图 2E)的融合结果要明显优于 STARFM，可以

清晰看出耕地、草地和沙地等不同地物的空间分布，与 Landsat真实影像相似度很高。该区域

RPRTM融合结果纹理特征更为清晰 (图 2F)，可以清楚地看出不同耕地区域的边界，与 Landsat NDVI真
实影像一致性高，融合结果较好。

从区域 2的 Landsat NDVI真实影像中可以看到明显的地形起伏特征，以及清晰的河流边界 (图 2G)。
MODIS NDVI影像的空间格局与 Landsat基本一致，但森林区域的 NDVI像元值略微偏低 (图 2H)。
STARFM融合结果与 Landsat NDVI影像的地形起伏格局基本一致，但是河流边界出现了若干的斑块问

题 (图 2I)。ESTARFM融合结果具有清晰的地形变化特征，更接近 Landsat NDVI真实影像，河流边界清

晰可见 (图 2J)。Fit-FC融合结果 (图 2K)与 Landsat真值影像相似，且与 ESTARFM相近。RPTRM融合

结果同样地形细节特征清晰，河流边界明显 (图 2L)。但与 ESTARFM不同，RPRTM是以 MODIS像元

值为目标通过站点训练构建的融合模型，因而其融合结果像元值更接近于 MODIS像元值，略低于

Landsat影像的 NDVI值。
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图 2    各种时空数据融合结果与对应的真实 NDVI 影像
Figure 2    Outputs of different models and real NDVI images

  

2.2    空间特征融合效果的定量分析

从表 1和图 3可以看出：在区域 1中，RPRTM与 Landsat NDVI真值的 R2 最高 (0.82)，MAD (0.04)
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和 RMSE (0.04)相对较小，表明在该模型下预测图像所含信息丰富，效果最佳。其次为 Fit-FC，与

Landsat NDVI真值的 R2 为 0.76，MAD、RMSE、Std、AG、IE分别为 0.03、0.05、0.09、0.01、6.07；区

域 2的情况有所不同，ESTARFM与 Landsat NDVI真值的 R2 最高，为 0.95，MAD和 RMSE最小，均

为 0.02，表明在该区域 ESTARFM的融合结果与 Landsat真实影像的相似度最高。造成这种差异的原因

主要是相对于区域 1，区域 2模型输入数据 (Landsat和 MODIS)差异较大。STARFM、ESTARFM和 Fit-
FC同属于基于重构的多源遥感数据时空融合方法，根据光谱线性混合原理，通过 2期 MODIS影像的差

异来模拟目标日期的 Landsat，其融合结果与 Landsat真值更为接近。而 RPRTM则属于基于学习的多源

遥感数据时空融合模型，以 MODIS NDVI为目标变量进行模型训练，融合后结果与 MODIS真值更为接

近。所以当目标日期的 Landsat影像与 MODIS值差异较大时，RPRTM融合结果与 Landsat影像的相似

度相对较低。Fit-FC在区域 1和区域 2中与 Landsat真实影像均有较高相似度，R2 分别为 0.76、0.90，表

明该模型对多种地表覆盖状况的多源遥感数据融合有较好的适用性。
 
 

表 1    各模型融合结果比较
Table 1    Comparison of different model result

区域 融合模型 R2 MAD RMSE Std AG IE

区域1

Landsat 0.01 6.31

MODIS 0.02 6.33

STARFM 0.60 0.04 0.07 0.10 0.01 6.17

ESTARFM 0.66 0.04 0.06 0.09 0.01 6.08

Fit-FC 0.76 0.03 0.05 0.09 0.01 6.07

RPRTM 0.82 0.04 0.04 0.10 0.02 6.34

区域2

Landsat 0.02 6.13

MODIS 0.01 5.97

STARFM 0.88 0.02 0.07 0.09 0.01 5.92

ESTARFM 0.95 0.02 0.02 0.10 0.02 6.13

Fit-FC 0.90 0.17 0.18 0.15 0.03 6.92

RPRTM 0.62 0.03 0.06 0.07 0.02 6.02
 
  

2.3    植被动态特征融合效果

图 4包括了 MODIS和 Landsat的 NDVI观测数据以及 4种模型融合数据的 NDVI时序统计结果，时

间分辨率为 16 d，从 2013年的第 129天 (5月 9日)到第 273天 (9月 30日)。总体来看，对于 3种不同植

被类型，4种融合方法均能较好地模拟其季节动态特征，能准确反映不同植被的生长动态变化。融合后

的 NDVI时间序列波动趋势与 MODIS NDVI基本一致，在生长季内呈明显的单峰特征。其中 RPRTM融

合后 NDVI曲线与 MODIS真值吻合度最高，几乎重叠，其次为 Fit-FC、ESTARFM，最后为 STARFM，

表明 RPRTM融合后的 NDVI时间序列最接近 MODIS真实值。通过相关性分析同样可以看出：对于

3种不同地表植被，RPRTM融合结果均取得了与 MODIS NDVI最高的相关性，在草地 (R2=0.99)、耕地

(R2=0.99)和森林 (R2=0.97)区域，对于地表植被状况的季节动态捕捉与 MODIS真实值保持着高度的一

致性。 

3    讨论

STARFM、ESTARFM、Fit-FC和 RPRTM都是针对单一传感器，不能同时满足对高时空分辨率数据

的需要所提出的多源遥感数据时空融合模型，通过联合MODIS系列数据的时间变化信息和 Landsat影像

的空间分布特征，生成具有高时空分辨率的数据。ZHANG等[37] 基于 STARFM融合的 NDVI数据不仅

能获得更好的地上生物量 (AGB)估算精度，同时还能获取更详细的草地 AGB时空变化信息，有助于草

地状况的监测以及灾害评估。然而，本研究中 2个研究区域的 STARFM融合效果较 ESTARFM和

RPRTM都要弱。有研究表明：STARFM模型应用的最大问题即当实际条件不满足忽略空间定位误差和
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大气纠正误差的前提下时，融合结果的精度将受到限制[22]。ESTARFM是针对 STARFM在地表空间异质

性较高区域融合效果较差的问题所提出的改进方法，假设像元反射率随时间变化稳定且为线性变化，此

假设使得在估算长时间数据时产生较大的误差，在一定程度上限制了其在反射率非线性变化的植被地区

的应用。ZHOU等[25] 比较了 6种典型的时空融合模型，认为 Fit-FC模型最适用于 NDVI影像融合，且具

有较好的抗几何误差能力，但对系统性辐射误差很敏感。因此，如果 2个传感器之间存在明显的辐射不

一致，Fit-FC的表现将会很差。在本研究中，Fit-FC不仅在空间维度上能获得较好的 NDVI融合结果，
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图 3    各融合结果与 Landsat NDVI 真实值之间的散点图
Figure 3    Scatter diagram between the fusion image and the real Landsat NDVI
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融合影像纹理特征清晰，在时间维度上 Fit-FC融合

结果也能较好地捕捉生长季 NDVI的动态变化特

征。不同于前三者基于重建的融合模型，RPRTM
是属于基于学习的多源遥感数据融合方法，通过学

习训练在 MODIS与 Landsat间构建经验模型，再通

过训练后的模型，基于 Landsat影像实现 MODIS的

降尺度，但同样存在一定局限性。首先，模型精度

很大程度上依赖于所选择的训练样本，导致模型稳

定性较弱。其次，以低空间分辨率、高时间分辨率

影像为模型训练的目标变量，导致 Landsat影像中

的一些极端像元值难以在融合后的影像中体现[38]。

本研究 2个不同的区域同时考察了地表覆盖特

征以及模型输入数据差异对于融合效果的影响。区

域 1地表覆盖状况较为复杂，纹理更丰富，具有更

高的空间异质性，模型输入数据一致性较高。区域

2地表覆盖状况相对简单，但模型输入数据差异较

大。SATRFM和 ESATRFM在区域 2融合结果与

Landsat真实值的相似性要高于区域 1，而在地表空

间异质性较高的区域融合效果相对较差，可以认为相对于模型输入数据的时空可比性，地表异质性对

STARFM和 ESTARFM融合效果的影响更大。基于学习的 RPRTM的 NDVI融合结果在区域 1比区域

2与 Landsat真值的相似性要高，其原因在于 RPRTM是以 MODIS像元值为真值进行模型训练，融合后

结果与 MODIS真值更为接近。所以当目标日期的 Landsat影像与 MODIS值差异较大时，RPRTM融合

结果与 Landsat影像的相似度相对较低，模型输入数据差异对 RPRTM影像较大。 

4    结论

4种融合方法中，地表覆盖状况对 STARFM融合效果有较大的影响，在地表覆盖状况较为复杂的区

域 1，STARFM表现出较差的适用性 (R2=0.60)。ESTARFM和 Fit-FC在 NDVI影像融合中的效果明显优

于 STARFM，可以有效地捕捉地表空间细节特征，更适用于复杂地表状况下的 NDVI数据融合。从植被

动态特征融合效果来看，4种融合模型对于 3种不同植被类型均取得了较好的效果，其中 RPRTM融合

结果与MODIS NDVI的时间动态变化趋势最为一致。
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