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Comparison of four fusion models for generating high spatio-temporal
resolution NDVI

LI Siyuan, YE Zhenni, MAO Yongwei, CHEN Yuling, ZENG Na
(College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] In order to choose adapted fusion methods in vegetation survey and dynamic
monitoring, we applied four different spatio-temporal fusion models including spatial and temporal adaptive
reflectance fusion model (STARFM), enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM), regression model fitting, spatial filtering and residual compensation (Fit-FC) and the rule-based
piecewise regression tree model (RPRTM). [Method] Based on the four spatio-temporal fusion models
(STARFM, ESTARFM, Fit-FC and RPRTM), two sampling regions (region I and II), with different surfaces
characteristics in the Three-River Headwaters Regions were taken to generate the high spatial information of the

Landsat NDVI (30 m, 16 d). Based on Landsat NDVI image, the spatial characteristics of the fusion data of
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different fusion models were evaluated by qualitative visual discrimination and quantitative statistical analysis.
Meanwhile, based on the MODIS NDVI time series, the fitting effect of different fusion methods on the
dynamic characteristics of surface vegetation was analyzed. [Result] (1) RPRTM had the optimal spatial fusion
performance in region [ (R*=0.82); and ESTARFM performed the best in region I (R*=0.95). (2) RPRTM has
achieved the best fusion for capturing temporal dynamics (R*=0.97-0.99), where the NDVI dynamics were
highly consistent with the temporal variations of MODIS. (3) Compared with the spatio-temporal comparability
of model input data, landscape heterogeneity had a greater impact on the fusion effect of STARFM and
ESTARFM. [Conclusion] Spatio-temporal fusion models can be used effectively to generate NDVI data at
high spatial and temporal resolution, with different models having different fusion effects. RPRTM performing
well in both complex surface areas and simulated vegetation growth dynamics. [Ch, 4 fig. 1 tab. 38 ref.]

Key words: spatio-temporal fusion method; normalized difference vegetation index (NDVI); enhanced spatial
and temporal adaptive reflectance fusion model (ESTARFM); rule-based piecewise regression tree model

(RPRTM); regression model fitting, spatial filtering and residual compensation (Fit-FC)
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Figure 1 Location, land cover and Landsat-8 panchromatic images of the study area
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Table 1 Comparison of different model result
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RPRTM 0.82 0.04 0.04 0.10 0.02 6.34
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Figure 3  Scatter diagram between the fusion image and the real Landsat NDVI
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