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Research progress in the response of soil extracellular enzymes
activity to climate changes
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Abstract: Soil extracellular enzymes play indispensable role in the driving of biogeochemical cycle of carbon,
nitrogen, phosphorus and other elements in soil ecosystem. Therefore, under the background of global changes,

disclosing the response of soil extracellular enzyme activity to variation of climate can improve the
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understanding of the mechanisms of soil carbon, nitrogen and phosphorus key biogeochemical processes under
climate change. However, the current understanding of the response mechanism of soil extracellular enzyme
activities related to carbon, nitrogen and phosphorus in different ecosystems to climate change still needs to
strengthen. Thus, the sources, classification and regulatory factors of soil extracellular enzymes in the
biogeochemical cycle of carbon, nitrogen and phosphorus, and the biogeochemical processes of soil
extracellular enzymes were summarized. On this basis, the response rules and mechanisms of soil extracellular
enzyme activity to nitrogen deposition, warming, precipitation and CO, changes were discussed. The response
mechanism of soil extracellular enzyme stoichiometry to common global change factors was summarized.
Therefore, in the context of global change, it is necessary to combine metabolome and molecular biology to
strengthen the response mechanism of soil extracellular enzymes to climate change. This review provides a new
perspective for further understanding the role of soil extracellular enzymes in biogeochemical cycles under
climate change scenarios. [Ch, 112 ref.]

Key words: soil extracellular enzyme; soil carbon, nitrogen and phosphorus cycle; global change; ecological

enzyme stoichiometry; review
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