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Approaches and policy recommendations for reducing emissions and
increasing carbon sinks in crop industry under the background of
carbon peak and carbon neutrality

KONG Delei, JIANG Peikun

(College of Environment and Resources/College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300,

Zhejiang, China)
Abstract: Carbon peak and carbon neutrality (dual carbon) is a broad and profound systemic change that
requires the participation of various industry sectors. Unlike other industries, crop industry is not only an
important source of greenhouse gas emissions, but also has enormous potential for carbon sequestration.
Promoting emission reduction and carbon sequestration in crop industry is an indispensable part of achieving
national dual carbon. In this paper, the main emission sources of nitrous oxide (N,O) and methane (CH,) in the
field of planting were sorted out, including N,O emissions caused by excessive nitrogen application, water-
saving irrigation of rice fields, and livestock and poultry waste, as well as CH, emissions from flooded rice
fields and ruminant animals. In addition to the direct emissions mentioned above, there existed a significant
amount of indirect carbon emissions during agricultural production processes. The greenhouse gas emission
reduction and carbon sequestration potential of crop industry were analyzed and the main emission reduction

and sequestration pathways were summarized, including N,O emission reduction in dryland, CH, emission
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reduction in rice fields. The potential of carbon sequestration and sink enhancement in crop industry could be
increased through the application of organic fertilizer, straw return to the field, conservation tillage and return of
farming waste to the field through pyrolysis and charring. This paper also discusses the feasibility and
importance of carbon labeling and carbon trading in promoting green and low carbon development in China’s
crop industry. It is clarified that emission reduction and soil carbon sink increase in crop industry must be based
on the premise of safeguarding food security, avoiding blind emission reduction and excessive emission
reduction, and must be coordinated with green development of crop industry. A sound guarantee and innovation
system should be established to provide assistance for China’s carbon peak and carbon neutrality. [Ch, 49 ref.]

Key words: climate change; carbon neutrality; carbon peak; greenhouse gas reduction; carbon sequestration

and sink enhancement; carbon label
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