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Abstract: Phosphorus is an important element for biological growth and development. Phosphate-solubilizing
bacteria and arbuscular mycorrhizal fungi are directly involved in the process of soil phosphorus activation and
plant phosphorus acquisition, which is of great significance for the turnover of phosphorus nutrients in
ecosystems and the formation of plant yield. In this paper, the mechanism of plant-microorganism collaboration
in promoting the efficient absorption and utilization of phosphorus nutrients was summarized and analyzed from
four aspects: the strategy of plant phosphorus acquisition and utilization, the coordination pathway of arbuscular
mycorrhizal fungi for plant phosphorus absorption, the coordination pathway of phosphate-solubilizing bacteria
for plant phosphorus absorption, and the synergy of plant-arbuscular mycorrhizal fungi-phosphate-solubilizing
bacteria. It was found in the analysis that the phosphorus acquisition process of plants required efficient root
adaptability, which promoted soil phosphorus activation by regulating root morphological traits and changing
the composition and secretion of root exudates. Arbuscular mycorrhizal fungi could promote the changes of soil

biological activity and chemical properties in rhizosphere and hyphosphere by exchanging mutually beneficial
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symbiotic substances with plants, and promote plants to obtain phosphorus. Phosphate-solubilizing bacteria had
a positive interaction with plants and arbuscular mycorrhizal fungi at the soil interface, secreting a variety of
organic acids, reducing soil pH, and increasing the activities of phosphorus activation-related enzymes to
improve soil available phosphorus levels. On this basis, research prospect of plant-arbuscular mycorrhizal fungi-
phosphate-solubilizing bacteria interaction to promote plant phosphorus uptake was prospected. Future research
should focus on the following aspects: the role of mycorrhizal traits in the interaction system, analysis and
identification of metabolite composition and potential functions of the member of the interaction system, and to
explore the effects of biotic or abiotic factors on the construction and functional assembly of soil microbial
community. [Ch, 141 ref.]
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Bacillus megaterium YR85 AR, ZA Fe*', RIVMMBEEE S . UL, EHRANREAE H B R IR TS
Fead R EAG AH 2 DTk, AN [ B AR R 2ORN L DR 7R 22 55 1T e S 0 Wi A TR 10 R B AL 1R A A E 225

32 AMEE-EWMEELR

TR TR 33 SRR AR R B o e AL MG s (R IR, 52 Z R IR R i R, SAE
Y e R AR A Z 0 BT B A BAE . AR R A N R A 885 O B IR E M PR kR
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A TR R L T 5 3 0 4 R R] 18 IR R A A ) 0 A SR B TE RS I 2L 5242 Taxus chinensis
var. mairei 18 2 [6) B 32 Fh B0 K #8 v 42 4R 58 Sinorhizobium meliloti CHW10B 5 45 Bk 2 & Glomus
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MY E KRB EERRZ —.
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i, {HAFAELL o A8 JE B 40 Alphaproteobacteria, J{ZK [ ] Actinobacteria il y 2% JE 4% Gammaproteobacteria
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