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摘要：【目的】无人机多光谱遥感影像较可见光影像具有更丰富的光谱信息，在森林蓄积量估测中具有较大潜力。以无

人机载多光谱遥感影像为主要数据源，探索森林蓄积量的遥感估测模型，以克服传统地面调查工作量大、耗时长、成本

高等弊端。【方法】以滇中地区典型天然云南松 Pinus yunnanensis 纯林为研究对象，利用无人机多光谱影像提取单波段

反射率、各类植被指数、纹理特征等，计算各特征变量的标准地均值；筛选与云南松林蓄积量相关性显著的特征变量，

采用多元线性、随机森林、支持向量机建立云南松林蓄积量估测模型，以决定系数 (R2)、平均绝对误差 (EMA)、均方根误

差 (ERMS)、平均相对误差 (EMR) 评价模型精度。【结果】① 3 种模型中，随机森林的精度最高 (R2=0.89，EMA=4.69
m3·hm−2， ERMS=5.45  m3·hm−2， EMR=14.5%)，其次为支持向量机 (R2=0.74， EMA=5.27  m3·hm−2， ERMS=8.31  m3·hm−2，

EMR=13.1%)，最低为多元线性回归模型 (R2=0.35，EMA=10.12 m3·hm−2，ERMS=12.85 m3·hm−2，EMR=28.1%)；3 种模型在

测试集上的估测精度均有所降低，随机森林的模型表现最好，支持向量机次之，多元线性最差。② 3 种模型在云南松林

蓄积量估测中均存在一定的低值高估和高值低估现象。③ 基于无人机多光谱影像估测云南松林蓄积量，纹理特征仍是不

可忽视的重要因子。【结论】基于无人机多光谱影像，在不进行单木分割的情景下，提取标准地的单波段反射率、植被

指数、纹理特征均值，筛选适用于蓄积量估算的变量构建估测模型。通过对 3 种模型进行精度评价，随机森林为云南松

林蓄积量估测的最佳模型。图 2 表 5 参 27
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Abstract: [Objective]  Unmanned  aerial  vehicle  (UAV)  multispectral  remote  sensing  images,  with  richer
spectral  information than visible light images,  have great  potential  in forest  volume estimation.  Taking UAV-
borne  multispectral  remote  sensing  images  as  the  main  data  source,  this  study  aims  to  explore  the  remote
sensing estimation model of forest volume, so as to overcome the drawbacks of traditional ground survey, such
as  heavy  workload,  long  time  consumption  and  high  cost.  [Method]  Taking  the  typical  natural  pure Pinus
yunnanensis forest in Luomian Township, Fumin County, Kunming City as the research object, the single-band
reflectance, vegetation index and texture feature were extracted according to the UAV multispectral image, and
the  standard  ground  mean  of  each  characteristic  variable  was  calculated.  The  characteristic  variables 
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significantly  correlated  with  the  forest  volume  were  screened,  and  the  forest  volume  estimation  model  was
established  using  multiple  linear  regression,  random  forest  and  support  vector  machine.  The  model  accuracy
was evaluated by coefficient of determination (R2),  root mean square error (ERMS),  mean absolute error (EMA)
and  mean  relative  error  (EMR).  [Result]  (1)  Among  the  three  models,  the  random  forest  had  the  highest
accuracy  (R2=0.89,  EMA=4.69  m3·hm−2,  ERMS=5.45  m3·hm−2,  EMR=14.5%),  followed  by  the  support  vector
machine  (R2=0.74,  EMA=5.27  m3·hm−2,  ERMS=8.31  m3·hm−2,  EMR=13.1%).  The  multiple  linear  regression
model  had  the  minimum  accuracy  (R2=0.35, EMA=10.12  m3·hm−2, ERMS=12.85  m3·hm−2, EMR=28.1%).  The
estimation accuracy of the three models in the test set decreased. The random forest had the best performance,
followed by the support vector machine, and the multivariate linearity was the worst. (2) The three models had
certain  underestimation  and  overestimation  in  the  estimation  of  P.  yunnanensis  forest  volume.  (3)  Texture
feature was still an important factor that could not be ignored in estimating the forest volume of P. yunnanensis
based  on  UAV multispectral  images. [Conclusion] Based  on  the  multi-spectral  images  of  UAV,  the  single-
band  reflectance,  vegetation  index,  and  texture  factor  mean  values  of  the  standard  ground  were  extracted
without  individual  tree  segmentation,  and  the  variables  suitable  for  volume  estimation  were  screened  to
construct an estimation model.  Through the precision evaluation of the three models,  the random forest  is  the
best model for estimating P. yunnanensis volume. [Ch, 2 fig. 5 tab. 27 ref.]
Key  words: forest  volume; Pinus  yunnanensis  forests;  unmanned  aerial  vehicle  (UAV)  multispectral  image;
random forest; multiple linear regression; support vector regression
 

森林蓄积量是一定森林面积上所有活立木材积的总和[1]。作为森林生物量和碳储量的重要评价指

标，森林蓄积量能直接反映森林资源的数量与质量，是森林资源调查的重要因子之一。随着无人机遥感

技术的快速发展，无人机载可见光/多光谱遥感影像在森林资源调查领域得以快速推广，为森林蓄积量

调查提供了快速高效的技术手段。传统的森林蓄积量调查主要以地面调查为主，此类调查周期长，对人

力、物力的需求量巨大[2]。20世纪 90年代以来，国内外学者通过获取单一或多源遥感影像，以地面调

查数据作为因变量，以各类植被指数、纹理特征、地形因子等作为自变量，采用主成分分析、偏最小二

乘法、逐步回归、随机森林、k 邻近模型等方法建立回归模型，估测森林蓄积量，进行了较多有益的探

索[3−5]。卫星遥感影像具有长时序、大尺度、易获取等优势，但其影像易受天气影响，且难以兼顾分辨

率和成本。无人机具有成本低、机动灵活、影像分辨率高等优点，作为传统遥感估测的补充手段，在森

林资源调查中得到了广泛应用。通过搭载可见光、多光谱、高光谱、激光雷达等多种传感器，可获得低

空地表有关森林资源的多层面数据[6]。大量研究表明：基于无人机航拍影像估测森林蓄积量具有较高的

可行性。利用无人机航拍影像估测森林蓄积量主要包括 2个角度：① 基于数字正射影像 (DOM)、数字

表面模型 (DSM)、冠层高度模型 (CHM)获取林分株数、胸径、冠幅、树高等因子，从单木、林分 2个

角度进行蓄积量估测[7−12]；② 基于影像提取各类植被指数、纹理特征、地形因子等，建立森林蓄积量估

测模型，或是建立单株材积估测模型，再进一步计算森林蓄积量[13−14]。

无人机多光谱影像较可见光影像具有更丰富的光谱信息，可计算对森林蓄积量敏感的各类植被指

数，已被广泛用于植被参数信息的提取研究，在未来森林蓄积量估测研究中具有较大的潜力[14]。现有研

究大多以无人机获取的可见光影像为基础，对无人机载多光谱影像的尝试相对较少。本研究基于大疆精

灵 4多光谱版无人机拍摄的多光谱影像，在不进行影像分割的情景下，提取研究区单波段反射率、各类

植被指数、纹理特征等因子，计算标准地范围内的均值，建立云南松 Pinus yunnanensis 林蓄积量估测模

型，分析其在森林蓄积量估测建模中的可行性和适用性，旨在为今后森林蓄积量的遥感估算研究提供有

益的方法参考。 

1    研究地区与研究方法
 

1.1    研究区概况

研究区位于云南省昆明市富民县罗免乡 (25°16′21″~25°25′26″N，102°20′46″~102°29′14″E)。该地区
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属天然云南松林分布的典型区域，地势西南、西北高，东南低。属于低纬度亚热带高原季风气候区，四

季温差小，干湿季分明，年平均气温为 15.8 ℃，年平均降水量为 847.0 mm，研究区内以典型的天然云

南松纯林为主。 

1.2    标准地调查

于 2022年 10月在研究区内选取能充分代表林分总体特征平均水平的地块，设置大小为 25 m×25
m的标准地，共 63个。对标准地内胸径≥5.0 cm的

所有活立木进行每木定位，并测量胸径、树高、最

长冠幅、最短冠幅。标准地林分因子见表 1。根据

实测的胸径、树高，利用二元立木材积公式计算单

木材积，在此基础上计算标准地的蓄积量。云南松

林二元立木材积公式：

V = 0.000 058 290 117 5×D1.979 634 4×H0.907 151 55。

其中：V 为材积 (m3)；D 为胸径 (cm)；H 为树高 (m)。 

1.3    无人机多光谱影像采集及预处理

大疆精灵 4多光谱无人机作为多光谱影像采集平台，集成了 1个可见光相机和 5个多光谱相机 [包
括红光 (B1)、绿光 (B2)、蓝光 (B3)、红边 (B4)和近红外 (B5)波段 ]。于 2022年 11月 14日利用大疆精灵

4多光谱无人机，采用 DJI GS PRO地面站软件从各标准地获取多光谱影像数据。飞行高度设置为 100 m，

航向和旁向重叠率均设置为 85%。利用 DJI Terra软件对原始图像进行预处理，生成数字正射影像

(DOM)和数字表面模型 (DSM)。将 5个单波段的合成图像在 ArcGIS中合成为多光谱影像 (影像分辨率

为 5.3 cm)，计算所需的各类特征变量。 

1.4    特征变量提取 

1.4.1    单波段反射率及植被指数    植被指数是指多光谱遥感数据经过线性或非线性数学运算，产生能反

映植被生长状况的数值，已广泛用于森林蓄积量建模反演[15]。提取多光谱影像中红光、绿光、蓝光、红

边、近红外等 5个波段的反射率 (b1、b2、b3、b4、b5)，计算蓄积量估测中常用的植被指数：归一化植被

指数 (NDVI)，比值植被指数 (RVI)，差值植被指数 (DVI)，大气抗阻植被指数 (ARVI)，以及根据可见光

波段计算的植被指数：过绿指数 (EXG)[16]，绿蓝比值指数 (GBRI)[17]，绿红比值指数 (GRRI)[18]，归一化

绿蓝差异指数 (NGBDI)[19]，归一化绿红差异指数 (NGRDI)[20]，可见光波段差异植被指数 (VDVI)[21] 等
10个植被指数。 

1.4.2    纹理特征    在蓄积量估测中加入纹理特征有助于提高蓄积量的估算精度[22−24]。为避免影像高频空

间信息的丢失，选择较小的 3×3窗口提取纹理特征 [25]。借助 ENVI 5.3的纹理提取工具，在 3×3窗口

下，通过灰度共生矩阵提取纹理特征，主要包括方差 (VA)，均值 (ME)，协同性 (HO)，熵 (EN)，对比

度 (CO)，二阶矩 (SM)，相异性 (DI)和相关性 (CC)[14]。5个波段共 40个纹理特征。 

1.4.3    均值计算与特征变量筛选    由于标准地为方形标准地，且部分样地郁闭度较低，所以以标准地中

的某一点提取各特征变量值不能充分反映标准地特征。本研究以标准地边界为矢量区域，借助

ArcGIS的分区统计工具计算标准地范围内各特征变量的平均值作为自变量，建立蓄积量估测模型[26]。

可用于建立蓄积量估测模型的因子会随着研究区、数据源、成像时间等的差异而不同，在建立模型之前

对蓄积量与各特征变量进行 Pearson相关性分析，筛选与蓄积量相关性较高的特征变量构建模型。 

1.5    蓄积量估测模型研建

根据相关性分析的结果，选择在 0.01水平与蓄积量极显著相关的特征变量为自变量，按照 7∶3比例

随机划分训练集和测试集，采用多元线性回归 (MLR)、支持向量机 (SVR)、随机森林 (RF)等 3种回归方

法建立蓄积量估测模型。 

1.6    精度评价

利用决定系数 (R2)、均方根误差 (ERMS)、平均绝对误差 (EMA)、平均相对误差 (EMR)进行精度

评价[26]。 

 

表 1    标准地林分因子汇总
Table 1    Summary of stand factors in sample plots

项目
蓄积量/
(m3·hm−2)

株数
平均胸

径/cm
平均树

高/m
郁闭度

最小值 7.90 2 12.8 5.0 0.21

最大值 79.49 42 32.6 14.7 0.79

平均值 41.97 14 21.9 8.4 0.45
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2    结果与分析
 

2.1    相关分析

将单波段反射率、植被指数、纹理特征与蓄积量进行相关分析 (表 2)，5个波段反射率中，蓄积量

与 b1、b2 无显著相关性，与 b3 呈极显著负相关 (P＜0.01)，与 b4、b5 呈极显著正相关 (P＜0.01)。
  

表 2    蓄积量与单波段反射率、植被指数的相关性
Table 2    Correlation between forest volume and single band reflectance and vegetation indexes

植被指数 相关性 植被指数 相关性 单波段反射率 相关性

RVI 0.533** ARVI 0.548** b1 −0.126

NDVI 0.463** GBRI 0.341** b 2 −0.194

DVI 0.541** GRRI 0.541** b 3 −0.333**

VDVI 0.532** NGRDI −0.117 b 4 0.342**

EXG 0.508** NGBDI 0.310* b 5 0.381**

　　说明：b1、b2、b3、b4、b5 分别为红光、绿光、蓝光、红边、近红外反射率；**表示在 0.01 (双侧)水平上极显著相关，*表示在

0.05 (双侧)水平上显著相关。
 
 

在植被指数中，NGRDI与蓄积量不相关，NGBDI与蓄积量呈显著正相关 (P＜0.05)外，其余植被指

数均与蓄积量呈极显著正相关 (P＜0.01)。
如表 3所示：在 8个纹理特征中，HO、EN与蓄积量的相关性较高，VA、CO、DI次之，CC、

SM、ME与蓄积量的相关性较低。比较 5个波段提取的纹理特征，与蓄积量显著相关的纹理特征数由大

到小依次为 B5、B4、B1、B2、B3。
  

表 3    蓄积量与纹理特征的相关性
Table 3    Correlation between forest volume and texture factors

波段 CO CC DI EN HO ME SM VA

B1 0.115 −0.139 0.165 0.362** −0.381** −0.380** −0.253* 0.088

B2 0.297* −0.053 0.257* 0.428** −0.499** −0.189 −0.213 0.306*

B3 0.092 0.201 0.113 0.337** −0.173 −0.239 −0.115 0.111

B4 0.413** −0.123 0.405** 0.189 −0.507** 0.067 −0.218 0.392**

B5 0.408** −0.210 0.395** 0.409** −0.499** 0.129 −0.186 0.390**

　　说明：B1、B2、B3、B4、B5 分别为红光、绿光、蓝光、红边、近红外波段；**表示在 0.01 (双侧)水平上极显著相关，*表示在

0.05 (双侧)水平上显著相关。0.115表示红光波段 (B1)提取的对比度 (CO)与蓄积量的相关系数，其余值同理。
 
 

根据相关性分析结果，筛选出 26个在 0.01水平与蓄积量显著相关的因子，分别为单波段反射率

b3、b4、b5，植被指数 RVI、NDVI、DVI、VDVI、EXG、ARVI、GBRI、GRRI，纹理特征 B1-EN、B1-
HO、B1-ME、B2-EN、B2-HO、B3-EN、B4-CO、B4-DI、B4-HO、B4-VA、B5-CO、B5-DI、B5-EN、B5-
HO、B5-VA。 

2.2    估测模型构建 

2.2.1    多元线性回归    传统的线性回归模型易受自变量间共线性的影响，利用主成分分析可将原始的多

个变量转化为少数主成分因子，每个主成分之间相

互独立，克服自变量间的多重共线性的同时保留了

原始变量的绝大部分信息[3−4]。根据特征根和累计方

差解释率确定主成分个数 (表 4)。当主成分个数为

4个时，累计方差解释率达 93.66%，因此确定主成

分为 C1、C2、C3、C4。

提取的 4个主成分因子与原始变量的线性关系

 

表 4    主成分分析结果
Table 4    Principal component analysis

主成分 特征根 方差解释率/% 累积方差解释率/%

C1 14.80 56.92 56.92

C2 4.66 17.91 74.83

C3 3.24 12.45 87.29

C4 1.66 6.38 93.66
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M = 41.569+11.949C1−2.162C2+

2.020C3−2.706C4

如表 5，利用提取出的 4个主成分因子建立多元线性回归模型：

。其中：M 为蓄积量 (m3·hm−2)；C1、C2、C3、C4为主成分分析提取的主成分因子。
  

表 5    主成分与原始变量的线性关系
Table 5    Linear relationship between principal components and original variables

原始变量 C1 C2 C3 C4 原始变量 C1 C2 C3 C4

RVI 0.050 0.088 0.149 −0.064 B1-ME −0.030 −0.112 −0.134 0.296

NDVI 0.044 −0.029 0.000 0.052 B2-EN 0.048 −0.125 0.037 −0.187

DVI 0.051 0.009 0.189 0.108 B2-HO −0.055 0.111 0.003 0.142

VDVI 0.057 0.092 0.084 −0.034 B3-EN 0.043 −0.157 −0.008 −0.120

EXG 0.058 0.014 0.110 0.092 B4-CO 0.058 0.046 −0.133 0.037

ARVI 0.051 0.086 0.143 −0.124 B4-DI 0.060 0.029 −0.130 0.053

GBRI 0.041 0.087 −0.062 0.292 B4-HO −0.065 0.045 0.035 0.028

GRRI 0.054 0.089 0.112 −0.086 B4-VA 0.057 0.053 −0.138 0.049

B3 −0.025 −0.165 0.008 0.216 B5-CO 0.058 0.053 −0.130 0.035

B4 0.033 −0.081 0.161 0.350 B5-DI 0.060 0.038 −0.116 0.068

B5 0.036 −0.064 0.190 0.284 B5-EN 0.058 −0.082 −0.071 0.020

B1-EN 0.038 −0.161 0.023 −0.167 B5-HO −0.065 0.031 0.064 −0.007

B1-HO −0.043 0.151 0.029 0.121 B5-VA 0.057 0.060 −0.132 0.057
 
  

2.2.2    随机森林    本研究使用 Matlab建立随机森林

回归模型，决策树数目为 100，最小叶子数为 1，其

余参数均为默认值。如图 1所示：随机森林模型

中，变量重要性前 5位的均为纹理特征，说明纹理

特征对于蓄积量估测模型的重要性不可忽视。纹理

特征间的重要性程度差异大，不同波段间也存在较

大差异；植被指数对模型的影响比较稳定，植被指

数间除 GRRI外无明显差异。 

(γ)

2.2.3    支持向量机    基于 Matlab借助 LIBSVM工具

箱构建支持向量回归 (SVR)模型，支持向量机

(SVM)类型为 e-SVR，函数选择径向基核函数

(RBF)，涉及惩罚系数 (c)和径向基核函数的参数

这 2个重要参数。利用格网化寻优，得到最佳

γc、 分别为 4、0.062 5。 

2.3    模型结构分析

精度评价结果：在训练集上，随机森林模型精度最高 (R2=0.89，EMA=4.69 m3·hm−2，ERMS=5.45
m3·hm−2，EMR=14.5%)，支持向量机次之 (R2=0.74，EMA=5.27 m3·hm−2，ERMS=8.31 m3·hm−2，EMR=13.1%)，
多元线性回归精度最低 (R2=0.35，EMA=10.12 m3·hm−2，ERMS=12.85 m3·hm−2，EMR=28.1%)。在测试集

上，随机森林精度仍最高 (R2=0.69，EMA=7.59 m3·hm−2，ERMS=9.05 m3·hm−2，EMR=26.4%)，其次是支持

向量机 (R2=0.55，EMA=10.51 m3·hm−2，ERMS=12.45 m3·hm−2，EMR=38.5%)，多元线性回归最低 (R2=0.33，
EMA=10.08 m3·hm−2，ERMS=12.21 m3·hm−2，EMR=34.9%)。3种模型的测试集精度均有降低。

根据估测蓄积量与实测蓄积量绘制散点图。在训练集上 (图 2A~C)，随机森林和支持向量机模型离

散程度较小，散点在两侧分布较均匀，模型拟合效果较好；多元线性回归模型散点在两侧分布较均匀，

但离散程度较高，模型拟合较差。在测试集上 (图 2D~F)，3种模型散点在两侧分布不均匀，随机森林离

散程度小，其余 2种模型离散程度大。3种模型在训练集、测试集上均存在一定的低值高估和高值低估

现象。 
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图 1    随机森林模型变量重要性
Figure 1    Importance of random forest model variables
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图 2    实测蓄积量与估算蓄积量之间的相关关系
Figure 2    Correlation between measured forest volume and estimated forest volume

  

3    讨论

本研究基于无人机多光谱影像提取单波段反射率、各类植被指数、纹理特征，并计算其标准地均

值，利用结合主成分分析的多元线性回归、随机森林、支持向量机等建立蓄积量估测模型，结果表明：

随机森林模型的精度最高，支持向量机次之，多元线性回归最低。

苏迪等 [10] 根据平均胸径、平均树高、坡度、坡向等因子建立蓄积量估测模型 (模型 R2=0.738，
ERMS=5.135 8 m3·hm−2)，曾霞辉[11] 提取平均冠幅、郁闭度、平均树高、株数密度建立蓄积量估测模型 (模
型对应的 R2、EMR 分别为 0.64~0.78、18.93%~39.68%)。本研究所建立随机森林模型和支持向量机模型的

误差水平与其基本一致，多元线性回归模型精度较低。

于东海[13] 在对辽宁老秃顶子国家级自然保护区的蓄积量估测研究中，提取植被指数、纹理特征、地

形因子，并通过主成分分析提取主成分因子建立多元线性回归模型，模型 R2 为 0.88，拟合效果良好，

测试集平均相对误差为 9.96%。与该研究相比，本研究结合主成分分析法建立的多元线性回归模型

R2 为 0.35，测试集的平均相对误差为 34.9%，精度较低。对研究区进行对比发现，于东海[13] 所选研究区

森林覆盖率 97%，郁闭度、样地单位面积蓄积量高；本研究区郁闭度差异大，标准地单位面积蓄积量

低，最大值为 79.49 m3·hm−2，最小值低至 7.90 m3·hm−2，平均值为 41.97 m3·hm−2。2个研究区森林郁闭

度存在较大差异，估测精度可能受到郁闭度的影响。

不同窗口下提取的纹理特征对蓄积量估测精度存在一定影响，提取窗口过大或过小都会造成纹理特

征的错误分割进而影响估测精度[27]。基于无人机多光谱影像，在不同窗口大小下提取的纹理特征对蓄积

量估测精度的影响有待进一步研究。

研究区林分较稀疏，在部分标准地中，有少量的树木位于标准地边界附近，其部分树冠在标准地边

界之外。计算各变量均值时，此部分树冠所对应的特征变量没有参与均值计算，可能对估测精度产生一

定的影响。 

4    结论

以大疆精灵 4无人机获取滇中地区典型天然云南松林多光谱影像，提取并计算标准地单波段反射

率、植被指数、纹理特征均值，共 55个特征变量，经相关性分析筛选出 26个变量参与模型构建。通过
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对随机森林、支持向量机、多元线性回归 3种模型进行精度评价，最佳估测模型为随机森林。3种模型

在估测蓄积量时均存在一定的低值高估和高值低估现象。与同类型研究的蓄积量估测误差水平基本一

致，表明在不进行单木分割的情况下，利用无人机多光谱影像提取各因子，以各因子的标准地均值建立

模型估测蓄积量具有一定的可行性。
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